Spectral and scattering theory for perturbations of the Carleman operator
Algebra i analiz, Tome 25 (2013) no. 2, pp. 251-278.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectral properties of the Carleman operator (the Hankel operator with the kernel h0(t)=t1) are studied; in particular, an explicit formula for its resolvent is found. Then, perturbations are considered of the Carleman operator H0 by Hankel operators V with kernels v(t) decaying sufficiently rapidly as t and not too singular at t=0. The goal is to develop scattering theory for the pair H0, H=H0+V and to construct an expansion in eigenfunctions of the continuous spectrum of the Hankel operator H. Also, it is proved that, under general assumptions, the singular continuous spectrum of the operator H is empty and that its eigenvalues may accumulate only to the edge points 0 and π in the spectrum of H0. Simple conditions are found for the finiteness of the total number of eigenvalues of the operator H lying above the (continuous) spectrum of the Carleman operator H0, and an explicit estimate of this number is obtained. The theory constructed is somewhat analogous to the theory of one-dimensional differential operators.
Mots-clés : Hankel operators, resolvent kernels, absolutely continuous spectrum, eigenfunctions, wave operators, scattering matrix, resonances, discrete spectrum, total number of eigenvalues.
@article{AA_2013_25_2_a11,
     author = {D. R. Yafaev},
     title = {Spectral and scattering theory for perturbations of the {Carleman} operator},
     journal = {Algebra i analiz},
     pages = {251--278},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2013},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a11/}
}
TY  - JOUR
AU  - D. R. Yafaev
TI  - Spectral and scattering theory for perturbations of the Carleman operator
JO  - Algebra i analiz
PY  - 2013
SP  - 251
EP  - 278
VL  - 25
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a11/
LA  - en
ID  - AA_2013_25_2_a11
ER  - 
%0 Journal Article
%A D. R. Yafaev
%T Spectral and scattering theory for perturbations of the Carleman operator
%J Algebra i analiz
%D 2013
%P 251-278
%V 25
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a11/
%G en
%F AA_2013_25_2_a11
D. R. Yafaev. Spectral and scattering theory for perturbations of the Carleman operator. Algebra i analiz, Tome 25 (2013) no. 2, pp. 251-278. https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a11/

[1] Beals R., Deift P., Tomei C., Direct and inverse scattering on the line, Math. Surveys Monogr., 28, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl

[2] Buslaev V. S., Faddeev L. D., “Formulas for traces for a singular Sturm-Liouville differential operator”, Soviet Math. Dokl., 1 (1960), 451–454 | MR | Zbl

[3] Faddeev L. D., “Properties of the $S$-matrix of the one-dimensional Schrödinger equation”, Amer. Math. Soc. Transl. Ser. 2, 65, Amer. Math. Soc., Providence, RI, 1967, 139–166 | Zbl

[4] Howland J. S., “Spectral theory of self-adjoint Hankel matrices”, Michigan Math. J., 33 (1986), 145–153 | DOI | MR | Zbl

[5] Howland J. S., “Spectral theory of operators of Hankel type. I”, Indiana Univ. Math. J., 41:2 (1992), 409–426 | DOI | MR | Zbl

[6] Kuroda S. T., “Scattering theory for differential operators, I, operator theory”, J. Math. Soc. Japan, 25:1 (1973), 75–104 | DOI | MR | Zbl

[7] Östensson J., Yafaev D. R., “Trace formula for differential operators of an arbitrary order”, Oper. Theory Adv. Appl., 218, Birkhäuser Verlag, Basel, 2012, 541–570 | MR

[8] Peller V. V., Hankel operators and their applications, Springer-Verlag, Berlin, 2002 | MR | Zbl

[9] Power S. R., Hankel operators on Hilbert space, Pitnam, Boston, 1982 | MR | Zbl

[10] Yafaev D. R., Mathematical scattering theory. General theory, Amer. Math. Soc., Providence, RI, 1992 | MR | Zbl

[11] Yafaev D. R., “Spectral and scattering theory of fourth order differential operators”, Adv. Math. Sci., 225 (2008), 265–299 | MR | Zbl

[12] Yafaev D. R., Mathematical scattering theory. Analytic theory, Amer. Math. Soc., Providence, RI, 2010 | MR | Zbl