Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2013_25_2_a11, author = {D. R. Yafaev}, title = {Spectral and scattering theory for perturbations of the {Carleman} operator}, journal = {Algebra i analiz}, pages = {251--278}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2013}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a11/} }
D. R. Yafaev. Spectral and scattering theory for perturbations of the Carleman operator. Algebra i analiz, Tome 25 (2013) no. 2, pp. 251-278. https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a11/
[1] Beals R., Deift P., Tomei C., Direct and inverse scattering on the line, Math. Surveys Monogr., 28, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl
[2] Buslaev V. S., Faddeev L. D., “Formulas for traces for a singular Sturm-Liouville differential operator”, Soviet Math. Dokl., 1 (1960), 451–454 | MR | Zbl
[3] Faddeev L. D., “Properties of the $S$-matrix of the one-dimensional Schrödinger equation”, Amer. Math. Soc. Transl. Ser. 2, 65, Amer. Math. Soc., Providence, RI, 1967, 139–166 | Zbl
[4] Howland J. S., “Spectral theory of self-adjoint Hankel matrices”, Michigan Math. J., 33 (1986), 145–153 | DOI | MR | Zbl
[5] Howland J. S., “Spectral theory of operators of Hankel type. I”, Indiana Univ. Math. J., 41:2 (1992), 409–426 | DOI | MR | Zbl
[6] Kuroda S. T., “Scattering theory for differential operators, I, operator theory”, J. Math. Soc. Japan, 25:1 (1973), 75–104 | DOI | MR | Zbl
[7] Östensson J., Yafaev D. R., “Trace formula for differential operators of an arbitrary order”, Oper. Theory Adv. Appl., 218, Birkhäuser Verlag, Basel, 2012, 541–570 | MR
[8] Peller V. V., Hankel operators and their applications, Springer-Verlag, Berlin, 2002 | MR | Zbl
[9] Power S. R., Hankel operators on Hilbert space, Pitnam, Boston, 1982 | MR | Zbl
[10] Yafaev D. R., Mathematical scattering theory. General theory, Amer. Math. Soc., Providence, RI, 1992 | MR | Zbl
[11] Yafaev D. R., “Spectral and scattering theory of fourth order differential operators”, Adv. Math. Sci., 225 (2008), 265–299 | MR | Zbl
[12] Yafaev D. R., Mathematical scattering theory. Analytic theory, Amer. Math. Soc., Providence, RI, 2010 | MR | Zbl