Schr\"odinger equations with time-dependent strong magnetic fields
Algebra i analiz, Tome 25 (2013) no. 2, pp. 37-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

Time dependent d-dimensional Schrödinger equations itu=H(t)u, H(t)=(xiA(t,x))2+V(t,x) are considered in the Hilbert space H=L2(Rd) of square integrable functions. V(t,x) and A(t,x) are assumed to be almost critically singular with respect to the spatial variables xRd both locally and at infinity for the operator H(t) to be essentially selfadjoint on C0(Rd). In particular, when the magnetic fields B(t,x) produced by A(t,x) are very strong at infinity, V(t,x) can explode to the negative infinity like θ|B(t,x)|C(|x|2+1) for some θ1 and C>0. It is shown that such equations uniquely generate unitary propagators in H under suitable conditions on the size and singularities of the time derivatives of the potentials V˙(t,x) and A˙(t,x).
Mots-clés : unitary propagator, Schrödinger equation, magnetic field, quantum dynamics, Stummel class, Kato class.
@article{AA_2013_25_2_a1,
     author = {D. Aiba and K. Yajima},
     title = {Schr\"odinger equations with time-dependent strong magnetic fields},
     journal = {Algebra i analiz},
     pages = {37--62},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2013},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a1/}
}
TY  - JOUR
AU  - D. Aiba
AU  - K. Yajima
TI  - Schr\"odinger equations with time-dependent strong magnetic fields
JO  - Algebra i analiz
PY  - 2013
SP  - 37
EP  - 62
VL  - 25
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a1/
LA  - en
ID  - AA_2013_25_2_a1
ER  - 
%0 Journal Article
%A D. Aiba
%A K. Yajima
%T Schr\"odinger equations with time-dependent strong magnetic fields
%J Algebra i analiz
%D 2013
%P 37-62
%V 25
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a1/
%G en
%F AA_2013_25_2_a1
D. Aiba; K. Yajima. Schr\"odinger equations with time-dependent strong magnetic fields. Algebra i analiz, Tome 25 (2013) no. 2, pp. 37-62. https://geodesic-test.mathdoc.fr/item/AA_2013_25_2_a1/

[1] Cycon H., Froese R., Kirsch W., Simon B., Schrödinger operators with application to quantum mechanics and global geometry, Springer-Verlag, Berlin, 1987 | MR | Zbl

[2] Iwatsuka A., “Essential self-adjointness of the Schrödinger operators with magnetic fields diverging at infinity”, Publ. Res. Inst. Math. Sci., 26:5 (1990), 841–860 | DOI | MR | Zbl

[3] Kato T., “Linear evolution equations of ‘hyperbolic type’ ”, J. Fac. Sci. Univ. Tokyo, Sec. I, 17 (1970), 214–258 | MR

[4] Kato T., “Linear evolution equations of ‘hyperbolic type’ . II”, J. Math. Soc. Japan, 25 (1973), 684–666 | DOI | MR

[5] Kato T., “Remarks on the essential selfadjointness and related problems for differential operators”, Spectral theory of differential operators, North Holland, Amsterdam, 1981, 253–266 | MR | Zbl

[6] Kato T., “Schrödinger operators with singular potentials”, Israel J. Math., 13 (1973), 135–148 | DOI | MR | Zbl

[7] Lions J.-L., Magenes E., Non-homogeneous boundary value problems and applications, v. I, Grundlehren Math. Wiss., 181, Springer-Verlag, New York–Heidelberg, 1972 | Zbl

[8] Leinfelder H., Simader C., “Schrödinger operators with singular magnetic vector potentials”, Math. Z., 176 (1981), 1–19 | DOI | MR | Zbl

[9] Reed M., Simon B., Methods of modern mathematical physics, v. II, Fourier analysis, selfadjointness, Acad. Press, New York–San Francisco–London, 1975 | MR | Zbl

[10] Yajima K., “Existence of solutions for Schrödinger evolution equations”, Comm. Math. Phys., 110 (1987), 415–426 | DOI | MR | Zbl

[11] Yajima K., “Schrödinger evolution equations with magnetic fields”, J. d'Analyse Math., 56 (1991), 29–76 | DOI | MR | Zbl

[12] Yajima K., “On time dependent Schrödinger equations”, Dispersive nonlinear problems in mathematical physics, Quaderni di Matematica, 15, Seconda Univ. di Napoli, 2005, 267–329 | MR

[13] Yajima K., “Schrödinger equations with time-dependent unbounded singular potentials”, Rev. Math. Phys., 23 (2011), 823–838 | DOI | MR | Zbl