Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2006_18_2_a5, author = {A. L. Smirnov}, title = {Orientations and transfers in cohomology of algebraic varieties}, journal = {Algebra i analiz}, pages = {167--224}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2006}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/AA_2006_18_2_a5/} }
A. L. Smirnov. Orientations and transfers in cohomology of algebraic varieties. Algebra i analiz, Tome 18 (2006) no. 2, pp. 167-224. https://geodesic-test.mathdoc.fr/item/AA_2006_18_2_a5/
[1] Morel F., Voevodsky V., Homotopy category of schemes over a base, preprint, 1997 | MR
[2] Voevodsky V., “$\mathbf A^1$-homotopy theory”, Proceedings of the International Congress of Mathematicians, vol. 1 (Berlin, 1998), Doc. Math., Extra Vol. I, 1998, 579–604 | MR
[3] Panin I., Smirnov A., Push-forwards in oriented cohomology theories of algebraic varieties, $K$-theory Preprint Archives, 459, 2000
[4] Miln Dzh., Etalnye kogomologii, Mir, M., 1983 | MR | Zbl
[5] Thomason R., Throbaugh T., “Higher algebraic $K$-theory of schemes and of derived categories”, The Grothendieck Festschift, vol. 3, Progr. Math., 88, Birkhäuser Boston, Boston, MA, 1990, 247–436 | MR
[6] Khartskhorn R., Algebraicheskaya geometriya, Mir, M., 1981 | MR | Zbl
[7] Suslin A., Voevodsky V., “Bloch–Kato conjecture and motivic cohomology with finite coefficients”, The Arithmetics and Geometry of Algebraic Cycles, NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht, 2000, 117–189 | MR | Zbl
[8] Neeman A., Triangulated categories, Ann. of Math. Stud., 148, Princeton Univ. Press, Princeton, 2001 | MR | Zbl
[9] Hovey M., Model categories, Math. Surveys Monogr., 63, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl
[10] Smirnov A., “Pravilo Leibnitsa v algebraicheskoi $K$-teorii”, Zap. nauchn. sem. POMI, 319, 2004, 264–292 | MR | Zbl
[11] Quillen D., “Higher algebraic $K$-theory. I”, Algebraic $K$-Theory, I: Higher $K$-Theories (Proc. Conf. Seattle Res. Center, Battelle Memorial Inst., 1972), Lecture Notes in Math., 341, Springer, Berlin, 1973, 85–147 | MR | Zbl
[12] Morel F., Basic properties of the stable homotopy category of smooth schemes, preprint received approximately in March 2000
[13] Panin I., Push-forwards in oriented cohomology theories of algebraic varieties. II, K-theory Preprint Archives, 619, 2003
[14] Quillen D., “On the formal group laws of unoriented and complex cobordism theory”, Bull. Amer. Math. Soc., 75 (1969), 1293–1298 | DOI | MR | Zbl
[15] Fulton U., Teoriya peresechenii, Mir, M., 1989 | MR
[16] Deligne P., “Catégories tannakiennes”, The Grothendieck Festschrift, vol. 2, Progr. Math., 87, Birkhäuser Boston, Boston, MA, 1990, 111–195 | MR | Zbl
[17] Théorie de Topos et Cohomologie Étale de Schémas, Tome 1, Théorie des Topos, Séminaire de Géométrie Algébrique du Bois–Marie 1963–1964 (SGA 4), Lecture Notes in Math., 269, Dirigé par M. Artin, A. Grothendieck et J. L. Verdier, Springer-Verlag, 1972 | MR
[18] Smirnov A., “Gomotopicheskie svoistva algebraicheskikh vektornykh rassloenii”, Zap. nauchn. sem. POMI, 319, 2004, 261–263 | MR | Zbl
[19] Serr Zh., Algebraicheskie gruppy i polya klassov, Mir, M., 1968 | Zbl