Homogenization of elliptic systems with periodic coefficients: Weighted Lp and L estimates for asymptotic remainders
Algebra i analiz, Tome 18 (2006) no. 2, pp. 117-166.

Voir la notice de l'article provenant de la source Math-Net.Ru

The difference between the fundamental matrix for a second order selfadjoint elliptic system with sufficiently smooth periodic coefficients and the fundamental matrix for the corresponding homogenized system in Rn is shown to decay as O(1+|x|1n) at infinity, n2. As a consequence, weighted Lp and L estimates are obtained for the difference uεu0 of the solutions of a system with rapidly oscillating periodic coefficients and the homogenized system in Rn with right-hand side belonging to an appropriate weighted Lp-class in Rn.
@article{AA_2006_18_2_a4,
     author = {S. A. Nazarov},
     title = {Homogenization of elliptic systems with periodic coefficients: {Weighted} $L^p$ and $L^\infty$ estimates for asymptotic remainders},
     journal = {Algebra i analiz},
     pages = {117--166},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2006},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/AA_2006_18_2_a4/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Homogenization of elliptic systems with periodic coefficients: Weighted $L^p$ and $L^\infty$ estimates for asymptotic remainders
JO  - Algebra i analiz
PY  - 2006
SP  - 117
EP  - 166
VL  - 18
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/AA_2006_18_2_a4/
LA  - ru
ID  - AA_2006_18_2_a4
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Homogenization of elliptic systems with periodic coefficients: Weighted $L^p$ and $L^\infty$ estimates for asymptotic remainders
%J Algebra i analiz
%D 2006
%P 117-166
%V 18
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/AA_2006_18_2_a4/
%G ru
%F AA_2006_18_2_a4
S. A. Nazarov. Homogenization of elliptic systems with periodic coefficients: Weighted $L^p$ and $L^\infty$ estimates for asymptotic remainders. Algebra i analiz, Tome 18 (2006) no. 2, pp. 117-166. https://geodesic-test.mathdoc.fr/item/AA_2006_18_2_a4/

[1] Nečas J., Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967

[2] Nazarov S. A., “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi mat. nauk, 54:5 (1999), 77–142 | MR | Zbl

[3] Nazarov S. A., Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, t. 1, Nauch. kniga, Novosibirsk, 2002 | Zbl

[4] Bensoussan A., Lions J. L., Papanicolaou G., Asymptotic analysis for periodic structures, North-Holland Publishing Co., Amsterdam–New York, 1978 | MR

[5] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh. Matematicheskie zadachi mekhaniki kompozitsionnykh materialov, Nauka, M., 1984 | MR | Zbl

[6] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[7] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl

[8] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, MGU, M., 1990 | Zbl

[9] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[10] Nazarov S. A., “Asimptotika resheniya zadachi Dirikhle dlya uravneniya s bystro ostsilliruyuschimi koeffitsientami v pryamougolnike”, Mat. sb., 182:5 (1991), 692–722 | Zbl

[11] Birman M. Sh., Suslina T. A., “Threshold effects near the lower edge of the spectrum for periodic differential operators of mathematical physics”, Systems, Approximation, Singular Integral Operators and Related Topics (Bordeaux, 2000), Oper. Theory Adv. Appl., 129, Birkhäuser, Basel, 2001, 71–107 | MR | Zbl

[12] Birman M. Sh., Suslina T. A., “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i analiz, 15:5 (2003), 1–108 | MR | Zbl

[13] Zhikov V. V., “Ob operatornykh otsenkakh v teorii usredneniya”, Dokl. RAN, 403:3 (2005), 305–308 | MR | Zbl

[14] Zhikov V. V., “O spektralnom metode v teorii usredneniya”, Tr. Mat. in-ta RAN, 250, 2005, 95–104 | MR | Zbl

[15] Adams R. A., Fournier J. J. F., Sobolev spaces, Elsevier Science, Ltd, Amsterdam, 2003 | MR

[16] Sevostyanova E. V., “Asimptoticheskoe razlozhenie resheniya ellipticheskogo uravneniya vtorogo poryadka s periodicheskimi bystroostsilliruyuschimi koeffitsientami”, Mat. sb., 115:2 (1981), 204–222 | MR | Zbl

[17] Nazarov S. A., “Asymptotics at infinity of the solution to the Dirichlet problem for a system of equations with periodic coefficients in an angular domain”, Russian J. Math. Phys., 3:3 (1995), 297–326 | MR | Zbl

[18] Nazarov S. A., Thäter G., “Asymptotics at infinity of solutions to the Neumann problem in a sieve-type layer”, C.R. Mecanique, 331 (2003), 85–90 | DOI | Zbl

[19] Nazarov S. A., Thäter G., “Neumann problem in a perforated layer (sieve)”, Asymptotic Anal., 44:3/4 (2005), 259–298 | MR | Zbl

[20] Nazarov S. A., Slutskii A. S., “Asimptotika reshenii kraevykh zadach dlya uravneniya s bystroostsilliruyuschimi koeffitsientami v oblasti s maloi polostyu”, Mat. sb., 189:9 (1998), 107–142 | MR | Zbl

[21] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, M., 1958

[22] Stein E. M., Weiss G., “Fractional integrals on $n$-dimensional Euclidean space”, J. Math. Mech., 7 (1958), 503–514 | MR | Zbl

[23] McOwen R., “The behavior of the Laplacian on weighted Sobolev spaces”, Comm. Pure Appl. Math., 32 (1979), 783–795 | DOI | MR | Zbl

[24] Agmon S., Douglis A., Nirenberg L., “Estimates near the boundary for solutions of elliptic differential equations satisfying general boundary conditions. II”, Comm. Pure Appl. Math., 17 (1964), 35–92 | DOI | MR | Zbl

[25] Solonnikov V. A., “Ob obschikh kraevykh zadachakh dlya sistem, ellipticheskikh v smysle A. Duglisa–L. Nirenberga. 1”, Izv. AN SSSR. Ser. mat., 28:3 (1964), 665–706 ; “Об общих краевых задачах для систем, эллиптических в смысле А. Дуглиса–Л. Ниренберга. 2”, Тр. Мат. ин-та АН СССР, 92, 1966, 233–297 | MR | Zbl | MR | Zbl

[26] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. mat. o-va, 16, 1963, 209–292

[27] Mazya V. G., Plamenevskii B. A., “Vesovye prostranstva s neodnorodnymi normami i kraevye zadachi v oblastyakh s konicheskimi tochkami”, Elliptische Differentialgleichung (Meeting, Rostock, 1977), Wilhelm-Pieck-Univ., Rostock, 1978, 161–190 | MR

[28] Nazarov S. A., “Metod Vishika–Lyusternika dlya ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami. 1. Zadacha v konuse”, Sib. mat. zh., 22:4 (1981), 142–163 | MR | Zbl

[29] Nazarov S. A., “O techenii vody pod lezhachii kamen”, Mat. sb., 186:11 (1995), 75–110 | MR | Zbl

[30] Nazarov S. A., “Asymptotics of the solution to the Neumann problem in a domain with singular point of peak exterior type”, Russian J. Math. Phys., 4:2 (1996), 217–250 | MR | Zbl

[31] Nazarov S. A., “Asimptoticheskie razlozheniya na beskonechnosti reshenii zadachi teorii uprugosti v sloe”, Tr. Mosk. mat. o-va, 60, 1998, 3–97

[32] Pazy A., “Asymptotic expansions of ordinary differential equations in Hilbert space”, Arch. Rational Mech. Anal., 24 (1967), 193–218 | DOI | MR | Zbl

[33] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991 | MR

[34] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI | MR | Zbl

[35] Kozlov V. A., Maz'ya V. G., Rossmann J., Elliptic boundary value problems in domains with point singularities, Math. Surveys Monogr., 52, Amer. Math. Soc., Providence, 1997 | MR | Zbl

[36] Mazya V. G., Plamenevskii B. A., “Otsenki v $L_p$ i v klassakh Geldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 81 (1978), 25–82 | DOI | MR | Zbl