Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2006_18_2_a1, author = {V. Vasyunin and A. Vol'berg}, title = {The {Bellman} functions for a certain two-weight inequality: {A~case} study}, journal = {Algebra i analiz}, pages = {24--56}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2006}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/AA_2006_18_2_a1/} }
V. Vasyunin; A. Vol'berg. The Bellman functions for a certain two-weight inequality: A~case study. Algebra i analiz, Tome 18 (2006) no. 2, pp. 24-56. https://geodesic-test.mathdoc.fr/item/AA_2006_18_2_a1/
[B] Burkholder D. L., “Explorations in martingale theory and its applications”, École d'Été de Probabilités de Saint-Flour XIX–1989, Lecture Notes in Math., 1464, Springer, Berlin, 1991, 1–66 | MR
[CS] Cotlar M., Sadosky C., “On the Helson–Szegö theorem and a related class of modified Toeplitz kernels”, Harmonic Analysis in Euclidean spaces, part 1 (Proc. Sympos. Pure Math., Williams Coll., Williamstown, MA, 1978), Proc. Sympos. Pure Math., 35, eds. G. Weiss and S. Wainger, Amer. Math. Soc., Providence, RI, 1979, 383–407 | MR
[N] Nazarov F., A counterexample to a problem of Sarason on boundedness of the product of two Toeplitz operators, Preprint, 1996, pp. 1–5
[NTV1] Nazarov F., Treil S., Volberg A., “The Bellman functions and two-weight inequalities for Haar multipliers”, J. Amer. Math. Soc., 12 (1999), 909–928 | DOI | MR | Zbl
[NTV2] Nazarov F., Treil S., Volberg A., The T1 theorem for individual Haar multiplier, preprint, 2004
[NV] Nazarov F., Volberg A., “The Bellman function, two weighted Hilbert transform, and embeddings of the model spaces $K_\theta$”, Dedicated to the memory of Thomas H. Wolff, J. Anal. Math., 87 (2002), 385–414 | DOI | MR | Zbl
[S1] Sawyer E. T., “A characterization of a two-weight norm inequality for maximal operators”, Studia Math., 75 (1982), 1–11 | MR | Zbl
[S2] Sawyer E. T., “A characterization of two weight norm inequality for fractional and Poisson integrals”, Trans. Amer. Math. Soc., 308 (1988), 533–545 | DOI | MR | Zbl