Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2006_18_2_a0, author = {M. Bildhauer and M. Fuchs and X. Zhong}, title = {On strong solutions of the differential equations modeling the steady flow of certain incompressible generalized {Newtonian} fluids}, journal = {Algebra i analiz}, pages = {1--23}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2006}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/AA_2006_18_2_a0/} }
TY - JOUR AU - M. Bildhauer AU - M. Fuchs AU - X. Zhong TI - On strong solutions of the differential equations modeling the steady flow of certain incompressible generalized Newtonian fluids JO - Algebra i analiz PY - 2006 SP - 1 EP - 23 VL - 18 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/AA_2006_18_2_a0/ LA - en ID - AA_2006_18_2_a0 ER -
%0 Journal Article %A M. Bildhauer %A M. Fuchs %A X. Zhong %T On strong solutions of the differential equations modeling the steady flow of certain incompressible generalized Newtonian fluids %J Algebra i analiz %D 2006 %P 1-23 %V 18 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/AA_2006_18_2_a0/ %G en %F AA_2006_18_2_a0
M. Bildhauer; M. Fuchs; X. Zhong. On strong solutions of the differential equations modeling the steady flow of certain incompressible generalized Newtonian fluids. Algebra i analiz, Tome 18 (2006) no. 2, pp. 1-23. https://geodesic-test.mathdoc.fr/item/AA_2006_18_2_a0/
[AM] Acerbi E., Mingione G., “Regularity results for stationary electrorheological fluids”, Arch. Rat. Mech. Anal., 164 (2002), 213–259 | DOI | MR | Zbl
[ABF] Apushkinskaya D., Bildhauer M., Fuchs M., “Steady states of anisotropic generalized Newtonian fluids”, J. Math. Fluid Mech., 7 (2005), 261–297 | DOI | MR | Zbl
[BF1] Bildhauer M., Fuchs M., “Variants of the Stokes problem: the case of anisotropic potentials”, J. Math. Fluid Mech., 5 (2003), 364–402 | DOI | MR | Zbl
[BF2] Bildhauer M., Fuchs M., “A regularity result for stationary electrorheological fluids in two dimensions”, Math. Methods Appl. Sci., 27 (2004), 1607–1617 | DOI | MR | Zbl
[BF3] Bildhauer M., Fuchs M., “Regularization of convex variational problems with applications to generalized Newtonian fluids”, Arch. Math. (Basel), 84 (2005), 155–170 | DOI | MR | Zbl
[BF4] Bildhauer M., Fuchs M., “$C^{1,\alpha}$-solutions to non-autonomous anisotropic variational problems”, Calc. Var., 24 (2005), 309–340 | DOI | MR | Zbl
[BFZ] Bildhauer M., Fuchs M., Zhong X., “A lemma on the higher integrability of functions with applications to the regularity theory of two-dimensional generalized Newtonian fluids”, Manuscripta Math., 116 (2005), 135–156 | DOI | MR | Zbl
[DER] Diening L., Ettwein F., Růžička M., $C^{1,\alpha}$-regularity for electrorheological fluids in two dimensions, Preprint, Univ. Freiburg, 2004
[ELM] Esposito L., Leonetti F., Mingione G., “Sharp regularity for functionals with $(p,q)$ growth”, J. Differential Equations, 204 (2004), 5–55 | MR | Zbl
[E] Ettwein F., Elektrorheologische Flüssigkeiten: Existenz starker Lösungen in zweidimensionalen Gebieten, Diplomarbeit, Univ. Freiburg, 2002
[ER] Ettwein F., Růžička M., “Existence of strong solutions for electrorheological fluids in two dimensions: steady Dirichlet problem”, Geometric Analysis and Nonlinear Partial Differential Equations, Springer-Verlag, Berlin, 2003, 591–602 | MR | Zbl
[FMS] Frehse J., Málek J., Steinhauer M., “On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method”, SIAM J. Math. Anal., 34 (2003), 1064–1083 | DOI | MR | Zbl
[Ga] Galdi G., An introduction to the mathematical theory of the Navier-Stokes equations, vol. 1, Springer Tracts Nat. Philos., 38, Springer-Verlag, New York, 1994 | MR | Zbl
[Gi] Giaquinta M., Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. of Math. Stud., 105, Princeton Univ. Press, Princeton, NJ, 1983 | MR | Zbl
[GT] Gilbarg D., Trudinger N., Elliptic partial differential equations of the second order, 2nd ed., Grundlehren Math. Wiss., 224, Springer-Verlag, Berlin, 1983 | MR | Zbl
[KMS] Kaplický P., Málek J., Stará J., “$C^{1,\alpha}$-solutions to a class of nonlinear fluids in two dimensions — stationary Dirichlet problem”, Zap. nauch. semin. POMI, 259, 1999, 89–121 | MR | Zbl
[KKM] Kauhanen J., Koskela P., Malý J., “On functions with derivatives in a Lorentz spaces”, Manuscripta Math., 100 (1999), 87–101 | DOI | MR | Zbl
[La] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, 2-e izd., Nauka, M., 1970 | MR
[Pi] Piletskas K. I., “O prostranstvakh solenoidalnykh vektorov”, Zap. nauch. semin. LOMI, 96, 1980, 237–239 | MR | Zbl
[R] Růžička M., Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Math., 1748, Springer-Verlag, Berlin, 2000 | MR | Zbl
[Z] Zhikov V. V., “On Lavrentiev's phenomenon”, Russian J. Math. Phys., 3 (1995), 249–269 | MR | Zbl