Sub-Laplacians of holomorphic $L^{p}$-type on exponential Lie groups
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 259-270.

Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica

In this survey article, I shall give an overview on some recent developments concerning the $L^{p}$-functional calculus for sub-Laplacians on exponential solvable Lie groups. In particular, I shall give an outline on some recent joint work with W. Hebisch and J. Ludwig on sub-Laplacians which are of holomorphic $L^{p}$-type, in the sense that every $L^{p}$-spectral multiplier for $p \neq 2$ will be holomorphic in some domain.
@article{AANLMA_2002_9_13_3-4_a7,
     author = {Detlef, M\"uller},
     title = {Sub-Laplacians of holomorphic $L^{p}$-type on exponential {Lie} groups},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {259--270},
     publisher = {mathdoc},
     volume = {Ser. 9, 13},
     number = {3-4},
     year = {2002},
     language = {it},
     url = {https://geodesic-test.mathdoc.fr/item/AANLMA_2002_9_13_3-4_a7/}
}
TY  - JOUR
AU  - Detlef, Müller
TI  - Sub-Laplacians of holomorphic $L^{p}$-type on exponential Lie groups
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2002
SP  - 259
EP  - 270
VL  - 13
IS  - 3-4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/AANLMA_2002_9_13_3-4_a7/
LA  - it
ID  - AANLMA_2002_9_13_3-4_a7
ER  - 
%0 Journal Article
%A Detlef, Müller
%T Sub-Laplacians of holomorphic $L^{p}$-type on exponential Lie groups
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2002
%P 259-270
%V 13
%N 3-4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/AANLMA_2002_9_13_3-4_a7/
%G it
%F AANLMA_2002_9_13_3-4_a7
Detlef, Müller. Sub-Laplacians of holomorphic $L^{p}$-type on exponential Lie groups. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 259-270. https://geodesic-test.mathdoc.fr/item/AANLMA_2002_9_13_3-4_a7/