Bounded symmetric domains and derived geometric structures
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 243-257.
Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica
Every homogeneous circular convex domain $D \subset \mathbb{C}^{n}$ (a bounded symmetric domain) gives rise to two interesting Lie groups: The semi-simple group $G = Aut(D)$ of all biholomorphic automorphisms of $D$ and its isotropy subgroup $K \subset GL(n,\mathbb{C})$ at the origin (a maximal compact subgroup of $G$). The group $G$ acts in a natural way on the compact dual $X$ of $D$ (a certain compactification of $\mathbb{C}^{n}$ that generalizes the Riemann sphere in case $D$ is the unit disk in $\mathbb{C}$). Various authors have studied the orbit structure of the $G$-space $X$, here we are interested in the Cauchy-Riemann structure of the $G$-orbits in $X$ (which in general are only real-analytic submanifolds of $X$). Also, we discuss certain $K$-orbits in the Grassmannian of all linear subspaces of $\mathbb{C}^{n}$ that are closely related to the geometry of the bounded symmetric domain $D$.
@article{AANLMA_2002_9_13_3-4_a6, author = {Wilhelm, Kaup}, title = {Bounded symmetric domains and derived geometric structures}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {243--257}, publisher = {mathdoc}, volume = {Ser. 9, 13}, number = {3-4}, year = {2002}, language = {it}, url = {https://geodesic-test.mathdoc.fr/item/AANLMA_2002_9_13_3-4_a6/} }
TY - JOUR AU - Wilhelm, Kaup TI - Bounded symmetric domains and derived geometric structures JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2002 SP - 243 EP - 257 VL - 13 IS - 3-4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/AANLMA_2002_9_13_3-4_a6/ LA - it ID - AANLMA_2002_9_13_3-4_a6 ER -
%0 Journal Article %A Wilhelm, Kaup %T Bounded symmetric domains and derived geometric structures %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2002 %P 243-257 %V 13 %N 3-4 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/AANLMA_2002_9_13_3-4_a6/ %G it %F AANLMA_2002_9_13_3-4_a6
Wilhelm, Kaup. Bounded symmetric domains and derived geometric structures. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 243-257. https://geodesic-test.mathdoc.fr/item/AANLMA_2002_9_13_3-4_a6/