Bounded symmetric domains and derived geometric structures
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 243-257.

Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica

Every homogeneous circular convex domain $D \subset \mathbb{C}^{n}$ (a bounded symmetric domain) gives rise to two interesting Lie groups: The semi-simple group $G = Aut(D)$ of all biholomorphic automorphisms of $D$ and its isotropy subgroup $K \subset GL(n,\mathbb{C})$ at the origin (a maximal compact subgroup of $G$). The group $G$ acts in a natural way on the compact dual $X$ of $D$ (a certain compactification of $\mathbb{C}^{n}$ that generalizes the Riemann sphere in case $D$ is the unit disk in $\mathbb{C}$). Various authors have studied the orbit structure of the $G$-space $X$, here we are interested in the Cauchy-Riemann structure of the $G$-orbits in $X$ (which in general are only real-analytic submanifolds of $X$). Also, we discuss certain $K$-orbits in the Grassmannian of all linear subspaces of $\mathbb{C}^{n}$ that are closely related to the geometry of the bounded symmetric domain $D$.
@article{AANLMA_2002_9_13_3-4_a6,
     author = {Wilhelm, Kaup},
     title = {Bounded symmetric domains and derived geometric structures},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {243--257},
     publisher = {mathdoc},
     volume = {Ser. 9, 13},
     number = {3-4},
     year = {2002},
     language = {it},
     url = {https://geodesic-test.mathdoc.fr/item/AANLMA_2002_9_13_3-4_a6/}
}
TY  - JOUR
AU  - Wilhelm, Kaup
TI  - Bounded symmetric domains and derived geometric structures
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2002
SP  - 243
EP  - 257
VL  - 13
IS  - 3-4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/AANLMA_2002_9_13_3-4_a6/
LA  - it
ID  - AANLMA_2002_9_13_3-4_a6
ER  - 
%0 Journal Article
%A Wilhelm, Kaup
%T Bounded symmetric domains and derived geometric structures
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2002
%P 243-257
%V 13
%N 3-4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/AANLMA_2002_9_13_3-4_a6/
%G it
%F AANLMA_2002_9_13_3-4_a6
Wilhelm, Kaup. Bounded symmetric domains and derived geometric structures. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 243-257. https://geodesic-test.mathdoc.fr/item/AANLMA_2002_9_13_3-4_a6/