Contact and conformal maps on Iwasawa N groups
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 219-232.

Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica

The action of the conformal group $O(1,n + 1)$ on $\mathbb{R}^{n} \cup \{\infty\}$ may be characterized in differential geometric terms, even locally: a theorem of Liouville states that a $C^{4}$ map between domains $U$ and $V$ in $\mathbb{R}^{n}$ whose differential is a (variable) multiple of a (variable) isometry at each point of $U$ is the restriction to $U$ of a transformation $x \rightarrow g \cdot x$, for some $g$ in $O(1,n + 1)$. In this paper, we consider the problem of characterizing the action of a more general semisimple Lie group $G$ on the space $G/P$ , where $P$ is a parabolic subgroup. We solve this problem for the cases where $G$ is $SL(3,\mathbb{R})$ or $Sp(2,\mathbb{R})$ and $P$ is a minimal parabolic subgroup.
@article{AANLMA_2002_9_13_3-4_a4,
     author = {Michael, Cowling and Filippo, De Mari and Adam, Kor\'anyi and Hans Martin, Reimann},
     title = {Contact and conformal maps on {Iwasawa} {N} groups},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {219--232},
     publisher = {mathdoc},
     volume = {Ser. 9, 13},
     number = {3-4},
     year = {2002},
     language = {it},
     url = {https://geodesic-test.mathdoc.fr/item/AANLMA_2002_9_13_3-4_a4/}
}
TY  - JOUR
AU  - Michael, Cowling
AU  - Filippo, De Mari
AU  - Adam, Korányi
AU  - Hans Martin, Reimann
TI  - Contact and conformal maps on Iwasawa N groups
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2002
SP  - 219
EP  - 232
VL  - 13
IS  - 3-4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/AANLMA_2002_9_13_3-4_a4/
LA  - it
ID  - AANLMA_2002_9_13_3-4_a4
ER  - 
%0 Journal Article
%A Michael, Cowling
%A Filippo, De Mari
%A Adam, Korányi
%A Hans Martin, Reimann
%T Contact and conformal maps on Iwasawa N groups
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2002
%P 219-232
%V 13
%N 3-4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/AANLMA_2002_9_13_3-4_a4/
%G it
%F AANLMA_2002_9_13_3-4_a4
Michael, Cowling; Filippo, De Mari; Adam, Korányi; Hans Martin, Reimann. Contact and conformal maps on Iwasawa N groups. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 219-232. https://geodesic-test.mathdoc.fr/item/AANLMA_2002_9_13_3-4_a4/