Contact and conformal maps on Iwasawa N groups
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 219-232.
Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica
The action of the conformal group $O(1,n + 1)$ on $\mathbb{R}^{n} \cup \{\infty\}$ may be characterized in differential geometric terms, even locally: a theorem of Liouville states that a $C^{4}$ map between domains $U$ and $V$ in $\mathbb{R}^{n}$ whose differential is a (variable) multiple of a (variable) isometry at each point of $U$ is the restriction to $U$ of a transformation $x \rightarrow g \cdot x$, for some $g$ in $O(1,n + 1)$. In this paper, we consider the problem of characterizing the action of a more general semisimple Lie group $G$ on the space $G/P$ , where $P$ is a parabolic subgroup. We solve this problem for the cases where $G$ is $SL(3,\mathbb{R})$ or $Sp(2,\mathbb{R})$ and $P$ is a minimal parabolic subgroup.
@article{AANLMA_2002_9_13_3-4_a4, author = {Michael, Cowling and Filippo, De Mari and Adam, Kor\'anyi and Hans Martin, Reimann}, title = {Contact and conformal maps on {Iwasawa} {N} groups}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {219--232}, publisher = {mathdoc}, volume = {Ser. 9, 13}, number = {3-4}, year = {2002}, language = {it}, url = {https://geodesic-test.mathdoc.fr/item/AANLMA_2002_9_13_3-4_a4/} }
TY - JOUR AU - Michael, Cowling AU - Filippo, De Mari AU - Adam, Korányi AU - Hans Martin, Reimann TI - Contact and conformal maps on Iwasawa N groups JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2002 SP - 219 EP - 232 VL - 13 IS - 3-4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/AANLMA_2002_9_13_3-4_a4/ LA - it ID - AANLMA_2002_9_13_3-4_a4 ER -
%0 Journal Article %A Michael, Cowling %A Filippo, De Mari %A Adam, Korányi %A Hans Martin, Reimann %T Contact and conformal maps on Iwasawa N groups %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2002 %P 219-232 %V 13 %N 3-4 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/AANLMA_2002_9_13_3-4_a4/ %G it %F AANLMA_2002_9_13_3-4_a4
Michael, Cowling; Filippo, De Mari; Adam, Korányi; Hans Martin, Reimann. Contact and conformal maps on Iwasawa N groups. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 219-232. https://geodesic-test.mathdoc.fr/item/AANLMA_2002_9_13_3-4_a4/