Voir la notice du livre provenant de la source Numdam
We consider the one-dimensional generalized forest fire process: at each site of
Nous étudions le processus des feux de forêt généralisé en dimension 1 : sur chaque site de
@book{MSMF_2013_2_132__1_0, author = {Bressaud, Xavier and Fournier, Nicolas}, title = {One-dimensional general forest fire processes}, series = {M\'emoires de la Soci\'et\'e Math\'ematique de France}, publisher = {Soci\'et\'e math\'ematique de France}, number = {132}, year = {2013}, doi = {10.24033/msmf.442}, zbl = {1297.60063}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/MSMF_2013_2_132__1_0/} }
TY - BOOK AU - Bressaud, Xavier AU - Fournier, Nicolas TI - One-dimensional general forest fire processes T3 - Mémoires de la Société Mathématique de France PY - 2013 IS - 132 PB - Société mathématique de France UR - https://geodesic-test.mathdoc.fr/item/MSMF_2013_2_132__1_0/ DO - 10.24033/msmf.442 LA - en ID - MSMF_2013_2_132__1_0 ER -
%0 Book %A Bressaud, Xavier %A Fournier, Nicolas %T One-dimensional general forest fire processes %S Mémoires de la Société Mathématique de France %D 2013 %N 132 %I Société mathématique de France %U https://geodesic-test.mathdoc.fr/item/MSMF_2013_2_132__1_0/ %R 10.24033/msmf.442 %G en %F MSMF_2013_2_132__1_0
Bressaud, Xavier; Fournier, Nicolas. One-dimensional general forest fire processes. Mémoires de la Société Mathématique de France, Série 2, no. 132 (2013), 144 p. doi : 10.24033/msmf.442. https://geodesic-test.mathdoc.fr/item/MSMF_2013_2_132__1_0/
[1] Emergence of the giant component in special Marcus-Lushnikov processes, Random Structures Algorithms, t.12 (1998), pp.179–196. | Zbl
–[2] —, Deterministic and stochastic models for coalescence (aggregation, coagulation): A review of the mean-field theory for probabilists, Bernoulli, t.5 (1999), pp.3–48. | Zbl
[3] —, The percolation process on a tree where infinite clusters are frozen, Math. Proc. Cambridge Philos. Soc., t.128 (2000), pp.465–477. | Zbl
[4] Amaral (L .A. N.) & Lauritsen (K. B.) – Self-organized criticality in a rice-pile model, Phys Rev. E., t.54 (1996), pp.4512–4515.
[5] Self-organized criticality: an explanation of
[6] —, Self-organized criticality, Phys. Rev. A, t.38 (1988), pp.364–374. | Zbl
[7] Self-organized forest-fires near the critical time, Comm. Math. Phys., t.267 (2006), pp.265–277. | Zbl
& –[8] Box-crossings and continuity results for self-destructive percolation in the plane, pp. 117–136 in In and Out of Equilibrium 2, Progress in Probability, vol.60, Birkhäuser, 2008. | Zbl
, & –[9] On the asymptotic density in a one-dimensional self-organized critical forest-fire model, Comm. Math. Phys., t.253 (2005), pp.633–644. | Zbl
& –[10] A signal-recovery system: asymptotic properties, and construction of an infinite-volume process, Stochastic Process. Appl., t.96 (2001), pp.177–190. | Zbl | MR
& –[11] Random fragmentation and coagulation processes, Cambridge Studies in Advanced Math., t.102 (2006). | Zbl
–[12] —, Burning cars in parkings, preprint, http://hal.archives-ouvertes. fr/ccsd-00505206/en/, 2010.
[13] Borgne (Y. Le) & Rossin (D.) – On the identity of the sand pile group, Discrete Math., t.256 (2002), pp.775–790.
[14] On the invariant distribution of an avalanche process, Ann. Probab., t.37 (2009), pp.48–77. | Zbl
& –[15] —, Asymptotics of one-dimensional forest fire processes., Ann. Probab., t.38 (2010), pp.1783–1816. | Zbl
[16] A modified version of frozen percolation on the binary tree, preprint, 2005, arXiv: math/0511021v1.
–[17] The cluster size distribution for a forest-fire process on
[18] The lattice of integer partitions, Discrete Math., t.6 (1973), pp.201–219. | Zbl
–[19] Persistence of screening and self-criticality in the scale invariant dynamics of diffusion limited aggregation, Phys. Rev. Lett., t.70 (1993), pp.3939–3942.
, & –[20] Tracer dispersion in a self-organized critical system, Phys. Rev. Lett., t.77 (1996), pp.107–110.
, , , & –[21] Processus stochastiques et fiabilité des systèmes, Springer-Smai, 1997.
–[22] Scaling and correlations in the dynamics of forest-fire occurrence, Phys. Rev. E, t.77 (2008), 016101, 7 pp.
, & –[23] What do we know about forest fire size distribution, and why is this knowledge useful for forest management?, Internat. J. Wildland Fire, t.17 (2008), pp.234–244.
& –[24] Relations between invasion percolation and critical percolation in two dimensions, Ann. Probab., t.37 (2009), pp.2297–2331. | Zbl
, & –[25] Self-organized critical state of sand pile automaton models, Phys. Rev. Lett., t.64 (1990), pp.1613–1616. | Zbl
–[26] —, Theoretical studies of self-organized criticality, Phys. A, t.369 (2006), pp.29–70.
[27] Self-organized critical forest-fire model, Phys. Rev. Lett., t.69 (1992), pp.1629–1632.
& –[28] Exact results for the one-dimensional self-organized critical forest-fire model, Phys. Rev. Lett., t.71 (1993), pp.3739–3742.
, & –[29] Existence of multi-dimensional volume self-organized critical forest-fire models, Electron. J. Prob., t.11 (2006), pp.513–539. | EuDML | Zbl
–[30] —, Uniqueness of multi-dimensional infinite volume self-organized critical forest-fire models, Electronic Comm. Prob., t.11 (2006), pp.304–315. | EuDML | Zbl
[31] —, Self-organized critical phenomena: Forest fire and sand pile models, Thèse, LMU München, 2009.
[32] On the evolution of random graphs, Bull. Inst. Internat. Statist., t.38 (1961), pp.343–347. | Zbl
& –[33] Marcus Lushnikov processes, Smoluchowski’s and Flory’s models, Stochastic Process. Appl., t.119 (2009), pp.167–189. | Zbl
& –[34] Sand pile models and lattices: a comprehensive survey, Theoret. Comput. Sci., t.322 (2004), pp.383–407. | Zbl
, , , & –[35] Critical behaviour of the Drossel-Schwabl forest fire model, New J. Physics, t.4 (2002), pp.17.
–[36] Percolation, Springer-Verlag, New York, 1989. | Zbl
–[37] Self-organized percolation: a simpler model, Bull. Am. Phys. Soc., t.34 (1989), pp.838.
–[38] Statistical analysis of large wildfires, pp. 59–77 in The Economics of Forest Disturbances: Wildfires, Storms, and Invasive Species, Springer, Dordrecht, 2008.
, & –[39] Holroyd (A. E.), Levine (L.), Meszaros (K.), Y. Peres (J. Propp) & Wilson (D.) – Chip-Firing and Rotor-Routing on Directed Graphs, pp. 331–364 in In and Out of Equilibrium 2, Progr. Probab., vol.60, 2008.
[40] Critical properties of the one-dimensional forest-fire model, Physica A, t.229 (1996), pp.478–500.
& –[41] Limit theorems for stochastic processes, Springer, 1982.
& –[42] Thermodynamic limit of the abelian sand pile model on
[43] Self-organized criticality, Cambridge Lecture Notes in Physics, vol.10, Cambridge University Press, 1998.
–[44] The coalescent, Stochastic Process. Appl., t.13 (1982), pp.235–248. | Zbl
–[45] Interacting particle systems, Springer, 1985. | Zbl
–[46] The Bak-Tang-Wiesenfeld sand pile model around the upper critical dimension, Phys. Rev. E, t.56 (1997), pp.5138–5143.
& –[47] The infinite volume limit of dissipative abelian sand piles, Commun. Math. Phys., t.244 (2004), pp.395–417. | Zbl
, & –[48] Exact fractal dimension of the loop-erased random walk in two dimensions, Phys. Rev. Lett., t.68 (1992), pp.2329–2331.
–[49] Multi-scalarité du phénomène feu de forêt en régions méditerranéennes françaises de 1973 à 2006, Thèse, Université d’Avignon, 2008.
–[50] Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes, Physical Review Letters, t.68 (1992), pp.1244–1247.
, & –[51] Theoritical studies of self-organized criticality, Physica A, t.173 (1991), pp.22–44.
, & –[52] Eulerian walkers as a model of self-organised criticality, Phys. Rev. Lett., t.77 (1996), pp.5079–5082.
, , & –[53] A new, efficient algorithm for the forest fire model, 2003.
& –[54] Mean field frozen percolation, J. Statist. Physics, t.137 (2009), pp.459–499. | Zbl
–[55] Erdős-Rényi random graphs
[56] Mathematical aspects of the abelian sand pile model, pp. 657–730 in Mathematical statistical physics, Elsevier, Amsterdam, 2006. | MR
–[57] A stochastic model for drainage patterns into a intramontane trench, Bull. Assoc. Sci. Hydrol., t.12 (1967), pp.15–20.
–[58] Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen, Physik. Zeitschr., t.17 (1916), pp.557–599.
–[59] Critical market crashes, Physics Reports, t.378 (2003), pp.1–98. | Zbl | MR
–[60] Personnal communication, 2010.
–[61] Self-organized percolation model for stock market fluctuations, Physica A, t.271 (1999), pp.496–506.
& –[62] Polynomial bound for a chip firing game on graphs, SIAM J. Discrete Math., t.1 (1988), pp.397–398. | Zbl | MR
–[63] Le modèle d’Ising, (2009), http://cel.archives-ouvertes.fr /cel-00392289.
–[64] Forest fires on
[65] Scaling theory of self-organized criticality, Phys. Rev. Lett., t.63 (1989), pp.470–473.
–[66] More realistic than anticipated: a classical forest-fire model from statistical physics captures real fire shapes, The Open Ecology J., t.1 (2008), pp.8–13.
& –[67] Wildfire, landscape diversity and the Drossel-Schwabl model, Ecological Modelling, t.221 (2010), pp.98–105.
, & –Cité par Sources :