Voir la notice du livre provenant de la source Numdam
Let
Soient
@book{MSMF_2002_2_91__1_0, author = {Delort, Jean-Marc}, title = {Global solutions for~small~nonlinear long~range~perturbations of~two~dimensional {Schr\"odinger~equations}}, series = {M\'emoires de la Soci\'et\'e Math\'ematique de France}, publisher = {Soci\'et\'e math\'ematique de France}, number = {91}, year = {2002}, doi = {10.24033/msmf.404}, mrnumber = {1942854}, zbl = {1008.35072}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/MSMF_2002_2_91__1_0/} }
TY - BOOK AU - Delort, Jean-Marc TI - Global solutions for small nonlinear long range perturbations of two dimensional Schrödinger equations T3 - Mémoires de la Société Mathématique de France PY - 2002 IS - 91 PB - Société mathématique de France UR - https://geodesic-test.mathdoc.fr/item/MSMF_2002_2_91__1_0/ DO - 10.24033/msmf.404 LA - en ID - MSMF_2002_2_91__1_0 ER -
%0 Book %A Delort, Jean-Marc %T Global solutions for small nonlinear long range perturbations of two dimensional Schrödinger equations %S Mémoires de la Société Mathématique de France %D 2002 %N 91 %I Société mathématique de France %U https://geodesic-test.mathdoc.fr/item/MSMF_2002_2_91__1_0/ %R 10.24033/msmf.404 %G en %F MSMF_2002_2_91__1_0
Delort, Jean-Marc. Global solutions for small nonlinear long range perturbations of two dimensional Schrödinger equations. Mémoires de la Société Mathématique de France, Série 2, no. 91 (2002), 100 p. doi : 10.24033/msmf.404. https://geodesic-test.mathdoc.fr/item/MSMF_2002_2_91__1_0/
[1] Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles nonlinéaires, Ann. Scient. Éc. Norm. Sup. 14, (1981) 209–256. | MR | EuDML
–[2] On the boundedness of pseudo-differential operators, J. Math. Soc. Japan 23, (1971), 374–378. | MR | Zbl
& –[3] Fluides parfaits incompressibles, Astérisque 230, (1995). | MR
–[4] Local existence for semi-linear Schrödinger equations, Math. Japonica 42, (1995), 35–52. | MR
–[5] —, Global existence of small solutions to semi-linear Schrödinger equations, Comm. Partial Differential Equations 21, (1996), 63–78. | MR | Zbl
[6] —, The initial value problem for cubic semi-linear Schrödinger equations, Publ. RIMS, Kyoto Univ. 32, (1996), 445–471. | MR | Zbl
[7] Global existence for the nonresonant Schrödinger equation in two space dimensions, Canad. Appl. Math. Quart. 2, (1994), 247-282. | MR
–[8] Existence globale et comportement asymptotique pour l’équation de Klein-Gordon quasi linéaire à données petites en dimension 1, Ann. Scient. Éc. Norm. Sup. 34, (2001), 1–61. | MR | EuDML
–[9] On the Cauchy problem for Schrödinger type equations and the regularity of the solutions, J. Math. Kyoto Univ. 34, (1994), 319–328. | MR | Zbl
–[10] Global existence of small solutions to nonlinear Schrödinger equations, Nonlinear Analysis, Theory, Methods and Applications 31, (1998), 671–685. | MR | Zbl
& –[11] Global existence of small analytic solutions to Schrödinger equations with quadratic nonlinearities, Comm. Partial Differential Equations 22, (1997), 773–798. | MR | Zbl
& –[12] Global existence of small solutions to the generalized derivative nonlinear Schrödinger equation, Asymptotic Analysis 21, (1999), 133–147. | MR | Zbl
, & –[13] On the quadratic nonlinear Schrödinger equation in three space dimensions, Internat. Math. Res. Notices (2000), 115–132. | MR | Zbl
& –[14] —, Asymptotics of small solutions to nonlinear Schrödinger equations with cubic nonlinearities, preprint, 12 pp.
[15] —, Global existence of small solutions to the quadratic nonlinear Schrödinger equation in two space dimensions, SIAM J. Math. Anal. 32 (2001), no. 6, 1390–1409.
[16] —, Asymptotic expansion of small analytic solutions to the quadratic nonlinear Schrödinger equation in two space dimensions, preprint, 15 pp.
[17] —, A quadratic nonlinear Schrödinger equation in one space dimension, preprint, 18 pp.
[18] Remarks on nonlinear Schrödinger equations in one space dimension, Diff. Integral Eqs 7, (1994), 453–461. | MR | Zbl
& –[19] Small solutions to nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré 10, (1993), 255–288. | MR | EuDML | Zbl | mathdoc-id
, & –[20] —, Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations, Invent. Math. 134 (1998), no. 3, 489–545. | MR | Zbl
Cité par 9 documents. Sources : zbMATH