Voir la notice du livre provenant de la source Numdam
In this article, third of a series, we complete the verification of the following fact. The nerve spectral sequence for the cohomology of the Borel-Serre boundary of a Shimura variety
Dans cet article, troisième d’une série, nous terminons la vérification du fait suivant. La suite spectrale « du nerf », qui calcule la cohomologie du bord de la compactification de Borel-Serre d’une variété de Shimura
@book{MSMF_2001_2_85__1_0, author = {Harris, Michael and Zucker, Steven}, title = {Boundary cohomology {of~Shimura~varieties,~III:} {Coherent} cohomology on higher-rank boundary strata and applications {to~Hodge~theory}}, series = {M\'emoires de la Soci\'et\'e Math\'ematique de France}, publisher = {Soci\'et\'e math\'ematique de France}, number = {85}, year = {2001}, doi = {10.24033/msmf.398}, mrnumber = {1850830}, zbl = {1020.11042}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/MSMF_2001_2_85__1_0/} }
TY - BOOK AU - Harris, Michael AU - Zucker, Steven TI - Boundary cohomology of Shimura varieties, III: Coherent cohomology on higher-rank boundary strata and applications to Hodge theory T3 - Mémoires de la Société Mathématique de France PY - 2001 IS - 85 PB - Société mathématique de France UR - https://geodesic-test.mathdoc.fr/item/MSMF_2001_2_85__1_0/ DO - 10.24033/msmf.398 LA - en ID - MSMF_2001_2_85__1_0 ER -
%0 Book %A Harris, Michael %A Zucker, Steven %T Boundary cohomology of Shimura varieties, III: Coherent cohomology on higher-rank boundary strata and applications to Hodge theory %S Mémoires de la Société Mathématique de France %D 2001 %N 85 %I Société mathématique de France %U https://geodesic-test.mathdoc.fr/item/MSMF_2001_2_85__1_0/ %R 10.24033/msmf.398 %G en %F MSMF_2001_2_85__1_0
Harris, Michael; Zucker, Steven. Boundary cohomology of Shimura varieties, III: Coherent cohomology on higher-rank boundary strata and applications to Hodge theory. Mémoires de la Société Mathématique de France, Série 2, no. 85 (2001), 122 p. doi : 10.24033/msmf.398. https://geodesic-test.mathdoc.fr/item/MSMF_2001_2_85__1_0/
[AMRT] Smooth compactification of Locally Symmetric Varieties, Math. Sci. Press, Brookline, MA, 1975. | MR | Zbl
, , , ,[BHR] Coherent cohomology, limits of discrete series, and Galois conjugation, Duke Math. J., 73, 647–685 (1994). | MR | Zbl
, , ,[B1] Introduction to automorphic forms, PSPM 9, In: Algebraic Groups and Discontinuous Subgroups, Proc. Symp. Pure Math. AMS, 9, 199–210 (1966).
,[B2] Stable real cohomology of arithmetic groups, Ann. Scient. Ec. Norm. Sup., 7, 235–272 (1974). | EuDML | Zbl | mathdoc-id
,[B3] Introduction aux Groupes Arithmétiques, Hermann, Paris, 1969. | Zbl
,[BG] Laplacian and the discrete spectrum of an arithmetic group, Am. J. Math., 105, 309–335 (1983). | Zbl
, ,[BS] Corners and arithmetic groups. Comm. Math. Helv., 48, 436–491 (1973). | EuDML | Zbl
, ,[De1] Equations différentielles à points singuliers réguliers. Lecture Notes in Math., 163, (1970). | Zbl
,[De2] Théorie de Hodge, III. Publ. Math. IHES 44, 5–77 (1974). | EuDML | Zbl | mathdoc-id
,[E] Mixed Hodge structures, Trans. AMS 275, 71–106 (1983).
,[F] On the cohomology of locally symmetric hermitian spaces, Lect. Notes in Math., 1029, 55-98 (1984).
,[Fr1] Harmonic analysis in weighted
[Fr2] A topological model for some summand in the Eisenstein cohomology of congruence subgroups (appended to [KR]). | Zbl
,[GH] Principles of Algebraic Geometry, John Wiley and Sons, New York (1978). | Zbl
, ,[Ha] On the cohomology of discrete arithmetically defined groups. In: Proceedings of the International Colloquium on Discrete Subgroups of Lie Groups and Applications to Moduli. Oxford Univ. Press, Bombay, 1975, 129–160. | Zbl
,[H1] Arithmetic vector bundles and automorphic forms on Shimura varieties. I. Invent. Math., 82, 151-189 (1985); II, Compositio Math., 60, 323–378 (1986). | EuDML | Zbl | mathdoc-id
,[H2] Functorial properties of toroidal compactifications of locally symmetric varieties, Proc. Lon. Math. Soc. 59, 1–22 (1989). | Zbl
,[H3] Automorphic forms and the cohomology of vector bundles on Shimura varieties, in L. Clozel and J.S. Milne, eds., Proceedings of the Conference on Automorphic Forms, Shimura Varieties, and
[H4] Automorphic forms of
[H5] Hodge-de Rham structures and periods of automorphic forms. In: Motives (Seattle, 1991), Proc. Symp. Pure Math. AMS, 55, Part 2, pp. 573–624 (1994). | Zbl
,[HP] Cohomologie de Dolbeault à croissance logarithmique à l’infini. C. R. Acad. Sci. Paris, 302, 307–310 (1986). | Zbl
, ,[HZ1] Boundary cohomology of Shimura varieties, I: coherent cohomology on the toroidal boundary, Ann. Scient. Ec. Norm. Sup., 27, 249–344 (1994). | EuDML | Zbl | mathdoc-id
, :[HZ2] Boundary cohomology of Shimura varieties, II: Hodge theory at the boundary, Inventiones Math., 116, 243–307 (1994); Erratum, Inventiones Math., 121, p. 437 (1995). | EuDML | Zbl
, :[Ka] The asymptotic behavior of a variation of polarized Hodge structure, Publ. RIMS Kyoto Univ., 21 (1985), 853–875. | Zbl
:[KKMS] Toroidal embeddings, Lecture Notes in Math., 339, (1973). | Zbl
, , , ,[KR] Geisterklassen im Bild der Borelabbildung für symplektishe und orthogonale Gruppen, Diplomarbeit, Uni. Bonn, 1997.
, :[K] Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math., 74, 329–287 (1961). | Zbl
:[Le] A generalization of the Bernstein-Gelfand-Gelfand resolution, J. Algebra, 49, 496–511 (1977). | Zbl
,[L]
[M1] Automorphic vector bundles on connected Shimura varieties, Invent. Math., 92, 91–128 (1988). | EuDML | Zbl
,[M2] Canonical models of (mixed) Shimura varieties and automorphic vector bundles. In: Clozel, L., Milne, J. (eds.), Automorphic Forms, Shimura Varieties, and
[M3] Descent for Shimura varieties. Michigan Math. J., 46, 203-208 (1999). | Zbl
,[Mo] Models of Shimura varieties in mixed characteristics, in A. J. Scholl and R. L. Taylor, eds., Galois Representations in Arithmetic Algebraic Geometry, London Mathematical Society Lecture Note Series, 254, 267-350 (1998). | Zbl
,[Mu] Hirzebruch’s proportionality theorem in the non-compact case, Inventiones Math., 42, 239–272 (1977). | EuDML | Zbl
,[P] Arithmetical compactifications of mixed Shimura varieties. Bonn Math. Schrift., Nr. 209 (1990).
,[RC] Splitting criteria for
[Sa1] Saito, Mo., Modules de Hodge polarisables. Publ. RIMS Kyoto Univ., 24 (1988), 849–995.
[Sa2] Saito, Mo.: Mixed Hodge modules and admissible variations. C.R.A.S. Paris, 309, 351–356 (1989).
[Sa3] Saito, Mo., Mixed Hodge modules, Publ. RIMS Kyoto Univ. 26, 221–333 (1990).
[SS]
[SZ] An introduction to
[Sch] Kohomologie arithmetisch definierter Gruppen und Eisensteinreihen, Lecture Notes in Math., 988, (1983). | Zbl
,[SGA 3] Schémas en groupes, Lecture Notes in Math., 151, 152, 153 (1970). | Zbl
, ,[StZ] Variation of mixed Hodge structure, I. Inventiones Math., 80, 489–542, (1985). | EuDML | Zbl
, ,[W1] Realizations of polylogarithms, Lecture Notes in Math., 1650, (1997). | Zbl
,[W2] Mixed sheaves on Shimura varieties and their higher direct images in toroidal compactifications, J. Alg. Geom. 9 (2000), 323–353. | Zbl
,[WK] Kóranyi, A., Generalized Cayley transformations of bounded symmetric domains, Amer. J. Math., 87, 899–939 (1965).
[Z1] Locally homogeneous variations of Hodge structure. L’Enseignement Math. 27, 243–275, (1981). | Zbl
,[Z2]
[Z3] Degeneration of mixed Hodge structures. Algebraic Geometry, Proc. of Symposia in Pure Math., 46, 283–293, (1987).
,[Z4] The Hodge structures on the intersection homology of varieties with isolated singularities. Duke Math. J. 55, (1987), 603–616. | Zbl
,[Z5] On the boundary cohomology of locally symmetric varieties. Vietnam J. Math. 25, 279–318, (1997).
,[Z6]
Cité par Sources :