Linéarisation des perturbations holomorphes des rotations et applications
Mémoires de la Société Mathématique de France, no. 77 (1999) , 107 p.

Voir la notice du livre provenant de la source Numdam

@book{MSMF_1999_2_77__R3_0,
     author = {Risler, Emmanuel},
     title = {Lin\'earisation des perturbations holomorphes des rotations et applications},
     series = {M\'emoires de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {77},
     year = {1999},
     doi = {10.24033/msmf.390},
     mrnumber = {2001k:37075},
     zbl = {0929.37017},
     language = {fr},
     url = {https://geodesic-test.mathdoc.fr/item/MSMF_1999_2_77__R3_0/}
}
TY  - BOOK
AU  - Risler, Emmanuel
TI  - Linéarisation des perturbations holomorphes des rotations et applications
T3  - Mémoires de la Société Mathématique de France
PY  - 1999
IS  - 77
PB  - Société mathématique de France
UR  - https://geodesic-test.mathdoc.fr/item/MSMF_1999_2_77__R3_0/
DO  - 10.24033/msmf.390
LA  - fr
ID  - MSMF_1999_2_77__R3_0
ER  - 
%0 Book
%A Risler, Emmanuel
%T Linéarisation des perturbations holomorphes des rotations et applications
%S Mémoires de la Société Mathématique de France
%D 1999
%N 77
%I Société mathématique de France
%U https://geodesic-test.mathdoc.fr/item/MSMF_1999_2_77__R3_0/
%R 10.24033/msmf.390
%G fr
%F MSMF_1999_2_77__R3_0
Risler, Emmanuel. Linéarisation des perturbations holomorphes des rotations et applications. Mémoires de la Société Mathématique de France, Série 2, no. 77 (1999), 107 p. doi : 10.24033/msmf.390. https://geodesic-test.mathdoc.fr/item/MSMF_1999_2_77__R3_0/

[1] L. V. Ahlfors, L. Bers, Riemann's mapping theorem for variable metrics, Ann. of Math., 72 (1960), 385-404. | Zbl | MR

[2] V. I. Arnold, On the mappings of the circumference onto itself, Translations A.M.S., vol. 46, 2nd series (1965), 213-284. | Zbl

[3] V. I. Arnold, Geometrical methods in the theory of ordinary differential equations, Grundlehren der mathematischen Wissenschaften 250, Springer-Verlag (1983). | Zbl | MR

[4] A. D. Bruno, Analytical form of differential equations, Transactions Moscow Math. Soc. 25 (1971), 131-288 ; 26 (1972), 199-239. | Zbl

[5] L. Carleson, T. W. Gamelin, Complex dynamics, Springer-Verlag (1991). | Zbl

[6] M. R. Herman, Exemples de fractions rationnelles ayant une orbite dense sur la sphère de Riemann, Bull. Soc. Math. France, 112 (1984), 93-142. | mathdoc-id | Zbl | MR | EuDML

[7] M. R. Herman, Simple proofs of local conjugacy theorems of diffeomorphisms of the circle with almost every rotation number, Bol. Soc. Bras. Mat. 16, 1 (1985), 45-53. | Zbl | MR

[8] L. Hörmander, An introduction to complex analysis in several variables, North Holland Mathematical Library, 2ème édition, (1973). | Zbl

[9] J. H. Hubbard, Sur les sections analytiques de la courbe universelle de Teichmüller, Memoirs of the A.M.S., vol. 4, No 166 (1976). | Zbl | MR

[10] S. Lang, Introduction to diophantine approximation, Addison Wesley, New York (1966). | Zbl | MR

[11] R. Mañ;E, On the instability of Herman rings, Inv. Math. 81 (1985), 459-471. | Zbl | MR

[12] R. Pérez-Marco, J.-C. Yoccoz, Germes de feuilletages holomorphes à holonomie prescrite, Astérisque 222, (1994), 345-371. | Zbl | MR | mathdoc-id

[13] E. Risler, Dynamique des perturbations holomorphes des rotations, Thèse de l'École Polytechnique (1996).

[14] H. Rüssmann, Kleine Nenner II: Bemerkungen zur Newtonschen Methode, Nachr. Akad. Wiss. Göttingen, Math. Phys. K1 (1972), 1-20. | Zbl | MR

[15] H. Rüssmann, On the frequencies of quasi-periodic solutions of analytic nearly integrable Hamiltonian systems, Seminar on Dynamical Systems (St Pet. 91), S. Kuksin, V. Lazutkin, J. Pöschel eds., Progress in Nonlinear Differential Equations and their Applications, Birkhäuser (1994). | Zbl

[16] C. L. Siegel, Iteration of analytic functions, Ann. of Math., 43 (1942), 807-812. | Zbl | MR

[17] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 63-89. | Zbl | MR | JFM

[18] J.-C. Yoccoz, Théorème de Siegel, nombres de Bruno et polynôme quadratique, Astérisque 231 (1995), 3-88. | MR

[19] J.-C. Yoccoz, Conjugaison des difféomorphismes analytiques du cercle, manuscrit (1988).

  • Goncharuk, Nataliya; Yampolsky, Michael Analytic linearization of conformal maps of the annulus, Advances in Mathematics, Volume 409 (2022), p. 33 (Id/No 108636) | DOI:10.1016/j.aim.2022.108636 | Zbl:1506.37058
  • Bounemoura, Abed Optimal linearization of vector fields on the torus in non-analytic Gevrey classes, Annales de l'Institut Henri Poincaré C. Analyse Non Linéaire, Volume 39 (2022) no. 3, pp. 501-528 | DOI:10.4171/aihpc/12 | Zbl:1512.37071
  • Goncharuk, Nataliya Self-similarity of bubbles, Nonlinearity, Volume 32 (2019) no. 7, pp. 2496-2521 | DOI:10.1088/1361-6544/ab1b8f | Zbl:1417.37150
  • Goncharuk, Nataliya Complex rotation numbers: bubbles and their intersections, Analysis PDE, Volume 11 (2018) no. 7, pp. 1787-1801 | DOI:10.2140/apde.2018.11.1787 | Zbl:1388.37049
  • Chu, Haifeng Surgery on Herman rings of the standard Blaschke family, Discrete and Continuous Dynamical Systems, Volume 38 (2018) no. 1, pp. 63-74 | DOI:10.3934/dcds.2018003 | Zbl:1381.37055
  • Goncharuk, Nataliya; Buff, Xavier Complex rotation numbers, Journal of Modern Dynamics, Volume 9 (2015), pp. 169-190 | DOI:10.3934/jmd.2015.9.169 | Zbl:1321.37040
  • Buff, Xavier; Chéritat, Arnaud Quadratic Julia sets with positive area, Annals of Mathematics. Second Series, Volume 176 (2012) no. 2, pp. 673-746 | DOI:10.4007/annals.2012.176.2.1 | Zbl:1321.37048
  • Goncharuk, N. B. Rotation numbers and moduli of elliptic curves, Functional Analysis and its Applications, Volume 46 (2012) no. 1, pp. 11-25 | DOI:10.1007/s10688-012-0002-8 | Zbl:1417.37151
  • Buff, Xavier; Chéritat, Arnaud A new proof of a conjecture of Yoccoz, Annales de l'Institut Fourier, Volume 61 (2011) no. 1, pp. 319-350 | DOI:10.5802/aif.2603 | Zbl:1223.37061
  • Marmi, Stefano; Sauzin, David A quasianalyticity property for monogenic solutions of small divisor problems, Bulletin of the Brazilian Mathematical Society. New Series, Volume 42 (2011) no. 1, pp. 45-74 | DOI:10.1007/s00574-011-0003-x | Zbl:1209.37053
  • de la Llave, Rafael; Luque, Alejandro Differentiability at the tip of Arnold tongues for Diophantine rotations: numerical studies and renormalization group explanations, Journal of Statistical Physics, Volume 143 (2011) no. 6, pp. 1154-1188 | DOI:10.1007/s10955-011-0233-8 | Zbl:1226.82019
  • Ribón, Javier Topological classification of families of diffeomorphisms without small divisors, Memoirs of the American Mathematical Society, 975, Providence, RI: American Mathematical Society (AMS), 2010 | DOI:10.1090/s0065-9266-10-00590-9 | Zbl:1205.37036
  • Seara, Tere M.; Villanueva, Jordi Numerical computation of the asymptotic size of the rotation domain for the Arnold family, Physica D, Volume 238 (2009) no. 2, pp. 197-208 | DOI:10.1016/j.physd.2008.09.002 | Zbl:1155.37319
  • Marmi, Stefano; Carminati, Carlo Linearization of germs: regular dependence on the multiplier, Bulletin de la Société Mathématique de France, Volume 136 (2008) no. 4, pp. 533-564 | DOI:10.24033/bsmf.2565 | Zbl:1175.37050
  • Luque, Alejandro; Villanueva, Jordi Computation of derivatives of the rotation number for parametric families of circle diffeomorphisms, Physica D, Volume 237 (2008) no. 20, pp. 2599-2615 | DOI:10.1016/j.physd.2008.03.047 | Zbl:1158.37017
  • Seara, Tere M.; Villanueva, Jordi On the numerical computation of Diophantine rotation numbers of analytic circle maps, Physica D, Volume 217 (2006) no. 2, pp. 107-120 | DOI:10.1016/j.physd.2006.03.013 | Zbl:1134.37339
  • Avila, Artur; Buff, Xavier; Chéritat, Arnaud Siegel disks with smooth boundaries, Acta Mathematica, Volume 193 (2004) no. 1, pp. 1-30 | DOI:10.1007/bf02392549 | Zbl:1076.37030
  • Marmi, Stefano; Moussa, Pierre; Yoccoz, Jean-Christophe Complex Brjuno functions, Journal of the American Mathematical Society, Volume 14 (2001) no. 4, pp. 783-841 | DOI:10.1090/s0894-0347-01-00371-x | Zbl:1051.37021

Cité par 18 documents. Sources : zbMATH