Voir la notice du livre provenant de la source Numdam
@book{AST_1999__254__R3_0, author = {Bushnell, Colin J. and Henniart, Guy}, title = {Local tame lifting for $GL(n)$ {II} : wildly ramified supercuspidals}, series = {Ast\'erisque}, publisher = {Soci\'et\'e math\'ematique de France}, number = {254}, year = {1999}, zbl = {0920.11079}, mrnumber = {1685898}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/AST_1999__254__R3_0/} }
Bushnell, Colin J.; Henniart, Guy. Local tame lifting for $GL(n)$ II : wildly ramified supercuspidals. Astérisque, no. 254 (1999), 109 p. https://geodesic-test.mathdoc.fr/item/AST_1999__254__R3_0/
[1] Simple algebras, base change, and the advanced theory of the trace formula, Annals of Math. Studies, vol. 120, Princeton University Press, 1989. | Zbl | MR
and -[2] Hereditary orders, Gauss sums and supercuspidal representations of
[3] Gauss sums and
[4] Non-abelian congruence Gauss sums and
[5] Local tame lifting for
[6] Correspondance de Lang-lands locale pour
[7] Local Rankin-Selberg convolutions for
[8] The admissible dual of
[9] The admissible dual of
[10] Simple types in
[11] Methods of representation theory I, Wiley-Interscience, New York, 1981. | MR
and -[12] Les constantes des équations fonctionnelles des fonctions
[13] Sur la variation, par torsion, des constantes locales d'équations fonctionnelles des fonctions L, Invent Math. 64 (1981), p. 89-118. | Zbl | EuDML | MR | DOI
and -[14] Correspondences of characters for relatively prime operator groups, Canad. J. Math. 20 (1968), p. 1465-1488. | Zbl | MR | DOI
-[15] Zeta functions of simple algebras, Lecture Notes in Math., vol. 260, Springer, Berlin, 1972. | Zbl | MR
and -[16] Supercuspidal representations in the cohomology of Drinfel'd upper half-spaces ; elaboration of Carayol's program, Invent. Math. 129 (1997), p. 75-120. | Zbl | MR | DOI
-[17] The local Langlands conjecture for
[18] On the geometry and cohomology of some simple Shimura varieties, Preprint (preliminary version) (1998). | Zbl | MR
and -[19] Galois
[20] La conjecture de Langlands locale numérique pour
[21] Une conséquence de la théorie du changement de base pour
[22] Automorphic induction for
[23] Character correspondences and irreducible induction and restriction, J. Alg. 140 (1991), p. 131-140. | Zbl | MR | DOI
and -[24] Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), p. 367-483. | Zbl | MR | DOI
, and -[25] The local Langlands correspondence : the non-Archimedean case, Proceedings of the Summer Research Conference on Motives (U. Janssen, S. Kleiman and J.-P. Serre, eds.), Proc. Symposia Pure Math, vol. 55, Amer. Math. Soc., 1994, p. 365-391. | Zbl | MR
-[26] The Langlands conjecture for
[27] The exceptional representations of
[28] On the local Langlands conjecture in prime dimension, Ann. Math. 121 (1985), p. 495-517. | Zbl | MR | DOI
and -[29] The restriction to
[30] Problems in the theory of automorphic forms, Lectures in modern analysis and applications III, Lecture Notes in Math., vol. 170, Springer, Berlin, 1970, p. 18-86. | Zbl | MR
-[31]
[32] Representations of solvable groups, London Math. Soc. Lecture Notes, vol. 185, Cambridge University Press, 1993. | Zbl | MR
and -[33] Sur la correspondance de Langlands-Kazhdan, J. Math. Pures et Appl. (9) 69 (1990), p. 175-226. | Zbl | MR
-[34] Local class field theory, Algebraic number theory (J. Cassels and A. Fröhlich, eds.), Academic Press, London, 1967, p. 129-161. | MR | Zbl
-[35] Fourier transforms of intertwining operators and Plancherel measures for GL(n), Amer. J. Math. 106 (1984), p. 67-111. | Zbl | MR | DOI
-[36] Characters of cuspidal unramified series for central simple algebras of prime degree, J. Math. Kyoto Univ. 29 (1989), p. 653-690. | MR | Zbl
-[37] Fourier analysis in number fields and Hecke's zeta-functions, Algebraic Number Theory (J. Cassels and A. Fröhlich, eds.), Academic Press, London, 1967, p. 305-347. | MR
-[38] Local constants, Algebraic Number Fields (A. Fröhlich, ed.), Academic Press, London, 1977, p. 89-131. | Zbl | MR
,[39] Number-theoretic background, Automorphic forms, Representations and