Singular integrals and rectifiable sets in n. Au-delà des graphes lipschitziens
Astérisque, no. 193 (1991) , 147 p.

Voir la notice du livre provenant de la source Numdam

@book{AST_1991__193__1_0,
     author = {David, Guy and Semmes, Stephen},
     title = {Singular integrals and rectifiable sets in $\mathbb{R}^n$. {Au-del\`a} des graphes lipschitziens},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {193},
     year = {1991},
     mrnumber = {1113517},
     zbl = {0743.49018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/AST_1991__193__1_0/}
}
TY  - BOOK
AU  - David, Guy
AU  - Semmes, Stephen
TI  - Singular integrals and rectifiable sets in $\mathbb{R}^n$. Au-delà des graphes lipschitziens
T3  - Astérisque
PY  - 1991
IS  - 193
PB  - Société mathématique de France
UR  - https://geodesic-test.mathdoc.fr/item/AST_1991__193__1_0/
LA  - en
ID  - AST_1991__193__1_0
ER  - 
%0 Book
%A David, Guy
%A Semmes, Stephen
%T Singular integrals and rectifiable sets in $\mathbb{R}^n$. Au-delà des graphes lipschitziens
%S Astérisque
%D 1991
%N 193
%I Société mathématique de France
%U https://geodesic-test.mathdoc.fr/item/AST_1991__193__1_0/
%G en
%F AST_1991__193__1_0
David, Guy; Semmes, Stephen. Singular integrals and rectifiable sets in $\mathbb{R}^n$. Au-delà des graphes lipschitziens. Astérisque, no. 193 (1991), 147 p. https://geodesic-test.mathdoc.fr/item/AST_1991__193__1_0/

[B] C. J. Bishop, Harmonic measures supported on curves, Dissertation, Univ. of Chicago, 1987. | MR

[BCGJ] C. J. Bishop, L. Carleson, J. B. Garnett and P. W. Jones, Harmonic measures supported on curves, Pac. J. Math. 138 (1989), 233-236. | MR | Zbl | DOI

[C1] F. M. Christ, CBMS Lectures, 1989.

[C2] F. M. Christ, A T(b) theorem with remarks on analytic capacity and the Cauchy integral, to appear. | MR | Zbl

[CW] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their uses in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. | MR | Zbl | DOI

[CDM] R. R. Coifman, G. David and Y. Meyer, La solution des conjectures de Calderón, Adv. in Math. 48 (1983), 144-148. | MR | Zbl | DOI

[CMM] R. R. Coifman, A. Mcintosh and Y. Meyer, L'intégrale de Cauchy définit un opérateur borné sur L2 pour les courbes lipschitziennes, Ann. of Math. 116 (1982), 361-388. | MR | Zbl | DOI

[D1] G. David, Opérateurs intégraux singuliers sur certaines courbes du plan complexe, Ann. Sci. Ec. Norm. Sup. 17 (1984), 157-189 | MR | Zbl | EuDML | mathdoc-id | DOI

[D2] G. David, Une minoration de la norme de l'opérateur de Cauchy sur les graphes lipschitziennes, Trans. Amer. Math. Soc. 302 (1987), 741-750. | MR | Zbl

[D3] G. David, Opérateurs d'intégrale singulière sur les surfaces régulières, Ann. Sci. Ec. Norm. Sup. (4) 21 (1988), 225-258. | MR | Zbl | EuDML | mathdoc-id | DOI

[D4] G. David, Morceaux de graphes lipschitziennes et intégrales singulières sur une surface, Rev. Mat. Iberoamericana 4 (1988), 73-114. | MR | Zbl | EuDML | DOI

[D5] G. David, Wavelets and Singular Integrals on Curves and Surfaces, to appear (Lecture Notes in Math, Springer-Verlag). | MR | Zbl | DOI

[DJ] G. David and D. Jerison, Lipschitz approximations to hypersurfaces, harmonic measure, and singular integrals, Indiana J. Math 39 (1990), 831-845. | MR | Zbl | DOI

[DS1] G. David and S. Semmes, Harmonic analysis and the geometry of subsets of 𝐑n, to appear in the proceedings of the conference held in honor of J.L. Rubio de Francia (El Escorial, Spain, June, 1989). | MR | Zbl

[DS2] G. David and S. Semmes, Strong A-weights, Sobolev inequalities, and quasiconformal mappings, in Analysis and Partial Differential Equations, edited by C. Sadosky, Lecture Notes in Pure and Applied Math., vol 122, Marcel Dekker, 1990. | MR | Zbl

[DS3] G. David and S. Semmes, Quantitative rectifiability and Lipschitz mappings, preprint. | MR | Zbl | DOI

[Do] J. R. Dorronsoro, A characterization of potential spaces, Proc. Amer. Math. Soc. 95 (1985), 21-31. | MR | Zbl | DOI

[Fe] H. Federer, Geometric Measure Theory, Springer-Verlag, 1969. | MR | Zbl

[Fg] X. Fang, The Cauchy integral of Calderón and analytic capacity, Thesis, Yale, 1990. | MR

[Fl] K. J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, 1984. | MR | Zbl

[G1] J. Garnett, Positive length but zero analytic capacity, Proc. Amer. Math. Soc. 21 (1970), 696-699. | Zbl | MR | DOI

[G2] J. Garnett, Analytic Capacity and Measure, Lecture Notes in Math. 297, Springer-Verlag, 1972. | MR | Zbl

[G3] J. Garnett, Bounded Analytic Functions, Academic Press, 1981. | MR | Zbl

[GJ] J. Garnett and P. W. Jones, The corona theorem for Denjoy domains, Acta. Math. 155 (1985), 29-40. | MR | Zbl | DOI

[J1] P. W. Jones, Square functions, Cauchy integrals, analytic capacity, and harmonic measure, in Harmonic Analysis and Partial Differential Equations, edited by J. Garcia-Cuerva, Lecture Notes in Math. 1384, Springer-Verlag, 1989. | MR | Zbl | DOI

[J2] P. W. Jones, Lipschitz and bi-Lipschitz functions, Rev. Mat. Iberoamericana 4 (1988), 115-122. | MR | Zbl | EuDML | DOI

[J3] P. W. Jones, Rectifiable sets and the travelling salesman problem, Invent. Math. 102 (1990), 1-15. | MR | Zbl | EuDML | DOI

[JL] J. L. Journé, Calderón-Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón, Lecture Notes in Math. 994, Springer-Verlag, 1983 | MR | Zbl

[Ma] P. Mattila , Lecture Notes on Geometric Measure Theory, Departmento de Matemáticas, Universidad de Extremadura, 1986. | MR | Zbl

[Ma2] P. Mattila, Cauchy singular integrals and rectifiability of measures in the plane, preprint. | Zbl | DOI

[Ma3] P. Mattila, A class of sets with positive length and zero analytic capacity, Ann. Acad. Sci. Fenn. 10 (1985), 387-395. | MR | Zbl

[Mu] T. Murai, A Real-Variable Method for the Cauchy Transform, and Analytic Capacity, Lecture Notes in Math. 1307, Springer-Verlag, 1988. | MR | Zbl

[S1] S. Semmes, Chord-arc surfaces with small constant I, to appear in Adv. in Math. | MR | Zbl

[S2] S. Semmes, Chord-arc surfaces with small constant II: good parameterizations, ibid. | Zbl | DOI

[S3] S. Semmes, A criterion for the boundedness of singular integrals on hypersurfaces, Trans. Amer. Math. Soc. 311 (1989), 501-513. | MR | Zbl | DOI

[S4] S. Semmes, Analysis vs geometry on a class of rectifiable hypersurfaces in 𝐑n, to appear, Indiana Math. Journal. | MR | Zbl