(Generalized) filter properties of the amalgamated algebra
Archivum mathematicum, Tome 58 (2022) no. 3, pp. 133-140.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let R and S be commutative rings with unity, f:RS a ring homomorphism and J an ideal of S. Then the subring RfJ:={(a,f(a)+j)aR and jJ} of R×S is called the amalgamation of R with S along J with respect to f. In this paper, we determine when RfJ is a (generalized) filter ring.
DOI : 10.5817/AM2022-3-133
Classification : 13A15, 13C14, 13C15, 13E05, 13H10
Mots-clés : amalgamated algebra; Cohen-Macaulay ring; f-ring; generalized f-ring
@article{10_5817_AM2022_3_133,
     author = {Azimi, Yusof},
     title = {(Generalized) filter properties of the amalgamated algebra},
     journal = {Archivum mathematicum},
     pages = {133--140},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {2022},
     doi = {10.5817/AM2022-3-133},
     mrnumber = {4483048},
     zbl = {07584085},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.5817/AM2022-3-133/}
}
TY  - JOUR
AU  - Azimi, Yusof
TI  - (Generalized) filter properties of the amalgamated algebra
JO  - Archivum mathematicum
PY  - 2022
SP  - 133
EP  - 140
VL  - 58
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.5817/AM2022-3-133/
DO  - 10.5817/AM2022-3-133
LA  - en
ID  - 10_5817_AM2022_3_133
ER  - 
%0 Journal Article
%A Azimi, Yusof
%T (Generalized) filter properties of the amalgamated algebra
%J Archivum mathematicum
%D 2022
%P 133-140
%V 58
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.5817/AM2022-3-133/
%R 10.5817/AM2022-3-133
%G en
%F 10_5817_AM2022_3_133
Azimi, Yusof. (Generalized) filter properties of the amalgamated algebra. Archivum mathematicum, Tome 58 (2022) no. 3, pp. 133-140. doi : 10.5817/AM2022-3-133. https://geodesic-test.mathdoc.fr/articles/10.5817/AM2022-3-133/

Cité par Sources :