Remotely c-almost periodic type functions in Rn
Archivum mathematicum, Tome 58 (2022) no. 2, pp. 85-104.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we relate the notions of remote almost periodicity and quasi-asymptotical almost periodicity; in actual fact, we observe that a remotely almost periodic function is nothing else but a bounded, uniformly continuous quasi-asymptotically almost periodic function. We introduce and analyze several new classes of remotely c-almost periodic functions in Rn, slowly oscillating functions in Rn, and further analyze the recently introduced class of quasi-asymptotically c-almost periodic functions in Rn. We provide certain applications of our theoretical results to the abstract Volterra integro-differential equations and the ordinary differential equations.
DOI : 10.5817/AM2022-2-85
Classification : 42A75, 43A60, 47D99
Mots-clés : remotely c-almost periodic functions in Rn; slowly oscillating functions in Rn; quasi-asymptotically c-almost periodic functions in Rn; abstract Volterra integro-differential equations; Richard-Chapman ordinary differential equation with external perturbation
@article{10_5817_AM2022_2_85,
     author = {Kosti\'c, Marco and Kumar, Vipin},
     title = {Remotely $c$-almost periodic type functions in ${\mathbb{R}}^{n}$},
     journal = {Archivum mathematicum},
     pages = {85--104},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {2022},
     doi = {10.5817/AM2022-2-85},
     mrnumber = {4448485},
     zbl = {07547203},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.5817/AM2022-2-85/}
}
TY  - JOUR
AU  - Kostić, Marco
AU  - Kumar, Vipin
TI  - Remotely $c$-almost periodic type functions in ${\mathbb{R}}^{n}$
JO  - Archivum mathematicum
PY  - 2022
SP  - 85
EP  - 104
VL  - 58
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.5817/AM2022-2-85/
DO  - 10.5817/AM2022-2-85
LA  - en
ID  - 10_5817_AM2022_2_85
ER  - 
%0 Journal Article
%A Kostić, Marco
%A Kumar, Vipin
%T Remotely $c$-almost periodic type functions in ${\mathbb{R}}^{n}$
%J Archivum mathematicum
%D 2022
%P 85-104
%V 58
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.5817/AM2022-2-85/
%R 10.5817/AM2022-2-85
%G en
%F 10_5817_AM2022_2_85
Kostić, Marco; Kumar, Vipin. Remotely $c$-almost periodic type functions in ${\mathbb{R}}^{n}$. Archivum mathematicum, Tome 58 (2022) no. 2, pp. 85-104. doi : 10.5817/AM2022-2-85. https://geodesic-test.mathdoc.fr/articles/10.5817/AM2022-2-85/

Cité par Sources :