Three dimensional near-horizon metrics that are Einstein-Weyl
Archivum mathematicum, Tome 53 (2017) no. 5, pp. 335-345.

Voir la notice de l'article dans Czech Digital Mathematics Library

We investigate which three dimensional near-horizon metrics $g_{NH}$ admit a compatible 1-form $X$ such that $(X, [g_{NH}])$ defines an Einstein-Weyl structure. We find explicit examples and see that some of the solutions give rise to Einstein-Weyl structures of dispersionless KP type and dispersionless Hirota (aka hyperCR) type.
DOI : 10.5817/AM2017-5-335
Classification : 53B15, 53B30, 83C57
@article{10_5817_AM2017_5_335,
     author = {Randall, Matthew},
     title = {Three dimensional near-horizon metrics that are {Einstein-Weyl}},
     journal = {Archivum mathematicum},
     pages = {335--345},
     publisher = {mathdoc},
     volume = {53},
     number = {5},
     year = {2017},
     doi = {10.5817/AM2017-5-335},
     mrnumber = {3746068},
     zbl = {06861561},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-5-335/}
}
TY  - JOUR
AU  - Randall, Matthew
TI  - Three dimensional near-horizon metrics that are Einstein-Weyl
JO  - Archivum mathematicum
PY  - 2017
SP  - 335
EP  - 345
VL  - 53
IS  - 5
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-5-335/
DO  - 10.5817/AM2017-5-335
LA  - en
ID  - 10_5817_AM2017_5_335
ER  - 
%0 Journal Article
%A Randall, Matthew
%T Three dimensional near-horizon metrics that are Einstein-Weyl
%J Archivum mathematicum
%D 2017
%P 335-345
%V 53
%N 5
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-5-335/
%R 10.5817/AM2017-5-335
%G en
%F 10_5817_AM2017_5_335
Randall, Matthew. Three dimensional near-horizon metrics that are Einstein-Weyl. Archivum mathematicum, Tome 53 (2017) no. 5, pp. 335-345. doi : 10.5817/AM2017-5-335. https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-5-335/

Cité par Sources :