Three dimensional near-horizon metrics that are Einstein-Weyl
Archivum mathematicum, Tome 53 (2017) no. 5, pp. 335-345.
Voir la notice de l'article dans Czech Digital Mathematics Library
We investigate which three dimensional near-horizon metrics $g_{NH}$ admit a compatible 1-form $X$ such that $(X, [g_{NH}])$ defines an Einstein-Weyl structure. We find explicit examples and see that some of the solutions give rise to Einstein-Weyl structures of dispersionless KP type and dispersionless Hirota (aka hyperCR) type.
@article{10_5817_AM2017_5_335, author = {Randall, Matthew}, title = {Three dimensional near-horizon metrics that are {Einstein-Weyl}}, journal = {Archivum mathematicum}, pages = {335--345}, publisher = {mathdoc}, volume = {53}, number = {5}, year = {2017}, doi = {10.5817/AM2017-5-335}, mrnumber = {3746068}, zbl = {06861561}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-5-335/} }
TY - JOUR AU - Randall, Matthew TI - Three dimensional near-horizon metrics that are Einstein-Weyl JO - Archivum mathematicum PY - 2017 SP - 335 EP - 345 VL - 53 IS - 5 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-5-335/ DO - 10.5817/AM2017-5-335 LA - en ID - 10_5817_AM2017_5_335 ER -
Randall, Matthew. Three dimensional near-horizon metrics that are Einstein-Weyl. Archivum mathematicum, Tome 53 (2017) no. 5, pp. 335-345. doi : 10.5817/AM2017-5-335. https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-5-335/
Cité par Sources :