Circular units of real abelian fields with four ramified primes
Archivum mathematicum, Tome 53 (2017) no. 4, pp. 221-252.
Voir la notice de l'article dans Czech Digital Mathematics Library
In this paper we study the groups of circular numbers and circular units in Sinnott’s sense in real abelian fields with exactly four ramified primes under certain conditions. More specifically, we construct $\mathbb{Z}$-bases for them in five special infinite families of cases. We also derive some results about the corresponding module of relations (in one family of cases, we show that the module of Ennola relations is cyclic). The paper is based upon the thesis [6], which builds upon the results of the paper [2].
DOI :
10.5817/AM2017-4-221
Classification :
11R20
Mots-clés : circular units; abelian fields; four ramified primes; Ennola relations
Mots-clés : circular units; abelian fields; four ramified primes; Ennola relations
@article{10_5817_AM2017_4_221, author = {Sedl\'a\v{c}ek, Vladim{\'\i}r}, title = {Circular units of real abelian fields with four ramified primes}, journal = {Archivum mathematicum}, pages = {221--252}, publisher = {mathdoc}, volume = {53}, number = {4}, year = {2017}, doi = {10.5817/AM2017-4-221}, mrnumber = {3733068}, zbl = {06819527}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-4-221/} }
TY - JOUR AU - Sedláček, Vladimír TI - Circular units of real abelian fields with four ramified primes JO - Archivum mathematicum PY - 2017 SP - 221 EP - 252 VL - 53 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-4-221/ DO - 10.5817/AM2017-4-221 LA - en ID - 10_5817_AM2017_4_221 ER -
Sedláček, Vladimír. Circular units of real abelian fields with four ramified primes. Archivum mathematicum, Tome 53 (2017) no. 4, pp. 221-252. doi : 10.5817/AM2017-4-221. https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-4-221/
Cité par Sources :