Modular classes of Q-manifolds: a review and some applications
Archivum mathematicum, Tome 53 (2017) no. 4, pp. 203-219.

Voir la notice de l'article dans Czech Digital Mathematics Library

A Q-manifold is a supermanifold equipped with an odd vector field that squares to zero. The notion of the modular class of a Q-manifold – which is viewed as the obstruction to the existence of a Q-invariant Berezin volume – is not well know. We review the basic ideas and then apply this technology to various examples, including $L_{\infty}$-algebroids and higher Poisson manifolds.
DOI : 10.5817/AM2017-4-203
Classification : 17B66, 53D17, 57R20, 58A50
Mots-clés : Q-manifolds; modular classes; characteristic classes; higher Poisson manifolds; $L_{\infty }$-algebroids
@article{10_5817_AM2017_4_203,
     author = {Bruce, Andrew James},
     title = {Modular classes of {Q-manifolds:} a review and some applications},
     journal = {Archivum mathematicum},
     pages = {203--219},
     publisher = {mathdoc},
     volume = {53},
     number = {4},
     year = {2017},
     doi = {10.5817/AM2017-4-203},
     mrnumber = {3733067},
     zbl = {06819526},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-4-203/}
}
TY  - JOUR
AU  - Bruce, Andrew James
TI  - Modular classes of Q-manifolds: a review and some applications
JO  - Archivum mathematicum
PY  - 2017
SP  - 203
EP  - 219
VL  - 53
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-4-203/
DO  - 10.5817/AM2017-4-203
LA  - en
ID  - 10_5817_AM2017_4_203
ER  - 
%0 Journal Article
%A Bruce, Andrew James
%T Modular classes of Q-manifolds: a review and some applications
%J Archivum mathematicum
%D 2017
%P 203-219
%V 53
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-4-203/
%R 10.5817/AM2017-4-203
%G en
%F 10_5817_AM2017_4_203
Bruce, Andrew James. Modular classes of Q-manifolds: a review and some applications. Archivum mathematicum, Tome 53 (2017) no. 4, pp. 203-219. doi : 10.5817/AM2017-4-203. https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-4-203/

Cité par Sources :