Isometry invariant Finsler metrics on Hilbert spaces
Archivum mathematicum, Tome 53 (2017) no. 3, pp. 141-153.
Voir la notice de l'article dans Czech Digital Mathematics Library
In this paper we study isometry-invariant Finsler metrics on inner product spaces over $\mathbb{R}$ or $\mathbb{C}$, i.e. the Finsler metrics which do not change under the action of all isometries of the inner product space. We give a new proof of the analytic description of all such metrics. In this article the most general concept of the Finsler metric is considered without any additional assumptions that are usually built into its definition. However, we present refined versions of the described results for more specific classes of metrics, including the class of Riemannian metrics. Our main result states that for an isometry-invariant Finsler metric the only possible linear maps under which the metric is invariant are scalar multiples of isometries. Furthermore, we characterize the metrics invariant with respect to all linear maps of this type.
DOI :
10.5817/AM2017-3-141
Classification :
53B40, 53C60, 58B20
Mots-clés : Finsler metric; unitary invariance; isometries; Riemannian metric
Mots-clés : Finsler metric; unitary invariance; isometries; Riemannian metric
@article{10_5817_AM2017_3_141, author = {Bilokopytov, Eugene}, title = {Isometry invariant {Finsler} metrics on {Hilbert} spaces}, journal = {Archivum mathematicum}, pages = {141--153}, publisher = {mathdoc}, volume = {53}, number = {3}, year = {2017}, doi = {10.5817/AM2017-3-141}, mrnumber = {3708768}, zbl = {06819521}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-3-141/} }
TY - JOUR AU - Bilokopytov, Eugene TI - Isometry invariant Finsler metrics on Hilbert spaces JO - Archivum mathematicum PY - 2017 SP - 141 EP - 153 VL - 53 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-3-141/ DO - 10.5817/AM2017-3-141 LA - en ID - 10_5817_AM2017_3_141 ER -
Bilokopytov, Eugene. Isometry invariant Finsler metrics on Hilbert spaces. Archivum mathematicum, Tome 53 (2017) no. 3, pp. 141-153. doi : 10.5817/AM2017-3-141. https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-3-141/
Cité par Sources :