On Jacobi fields and a canonical connection in sub-Riemannian geometry
Archivum mathematicum, Tome 53 (2017) no. 2, pp. 77-92.
Voir la notice de l'article dans Czech Digital Mathematics Library
In sub-Riemannian geometry the coefficients of the Jacobi equation define curvature-like invariants. We show that these coefficients can be interpreted as the curvature of a canonical Ehresmann connection associated to the metric, first introduced in [15]. We show why this connection is naturally nonlinear, and we discuss some of its properties.
DOI :
10.5817/AM2017-2-77
Classification :
53B15, 53B21, 53C17
Mots-clés : sub-Riemannian geometry; curvature; connection; Jacobi fields
Mots-clés : sub-Riemannian geometry; curvature; connection; Jacobi fields
@article{10_5817_AM2017_2_77, author = {Barilari, Davide and Rizzi, Luca}, title = {On {Jacobi} fields and a canonical connection in {sub-Riemannian} geometry}, journal = {Archivum mathematicum}, pages = {77--92}, publisher = {mathdoc}, volume = {53}, number = {2}, year = {2017}, doi = {10.5817/AM2017-2-77}, mrnumber = {3672782}, zbl = {06770053}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-2-77/} }
TY - JOUR AU - Barilari, Davide AU - Rizzi, Luca TI - On Jacobi fields and a canonical connection in sub-Riemannian geometry JO - Archivum mathematicum PY - 2017 SP - 77 EP - 92 VL - 53 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-2-77/ DO - 10.5817/AM2017-2-77 LA - en ID - 10_5817_AM2017_2_77 ER -
%0 Journal Article %A Barilari, Davide %A Rizzi, Luca %T On Jacobi fields and a canonical connection in sub-Riemannian geometry %J Archivum mathematicum %D 2017 %P 77-92 %V 53 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-2-77/ %R 10.5817/AM2017-2-77 %G en %F 10_5817_AM2017_2_77
Barilari, Davide; Rizzi, Luca. On Jacobi fields and a canonical connection in sub-Riemannian geometry. Archivum mathematicum, Tome 53 (2017) no. 2, pp. 77-92. doi : 10.5817/AM2017-2-77. https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-2-77/
Cité par Sources :