On Jacobi fields and a canonical connection in sub-Riemannian geometry
Archivum mathematicum, Tome 53 (2017) no. 2, pp. 77-92.

Voir la notice de l'article dans Czech Digital Mathematics Library

In sub-Riemannian geometry the coefficients of the Jacobi equation define curvature-like invariants. We show that these coefficients can be interpreted as the curvature of a canonical Ehresmann connection associated to the metric, first introduced in [15]. We show why this connection is naturally nonlinear, and we discuss some of its properties.
DOI : 10.5817/AM2017-2-77
Classification : 53B15, 53B21, 53C17
Mots-clés : sub-Riemannian geometry; curvature; connection; Jacobi fields
@article{10_5817_AM2017_2_77,
     author = {Barilari, Davide and Rizzi, Luca},
     title = {On {Jacobi} fields and a canonical connection in {sub-Riemannian} geometry},
     journal = {Archivum mathematicum},
     pages = {77--92},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2017},
     doi = {10.5817/AM2017-2-77},
     mrnumber = {3672782},
     zbl = {06770053},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-2-77/}
}
TY  - JOUR
AU  - Barilari, Davide
AU  - Rizzi, Luca
TI  - On Jacobi fields and a canonical connection in sub-Riemannian geometry
JO  - Archivum mathematicum
PY  - 2017
SP  - 77
EP  - 92
VL  - 53
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-2-77/
DO  - 10.5817/AM2017-2-77
LA  - en
ID  - 10_5817_AM2017_2_77
ER  - 
%0 Journal Article
%A Barilari, Davide
%A Rizzi, Luca
%T On Jacobi fields and a canonical connection in sub-Riemannian geometry
%J Archivum mathematicum
%D 2017
%P 77-92
%V 53
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-2-77/
%R 10.5817/AM2017-2-77
%G en
%F 10_5817_AM2017_2_77
Barilari, Davide; Rizzi, Luca. On Jacobi fields and a canonical connection in sub-Riemannian geometry. Archivum mathematicum, Tome 53 (2017) no. 2, pp. 77-92. doi : 10.5817/AM2017-2-77. https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-2-77/

Cité par Sources :