On the existence of non-linear frames
Archivum mathematicum, Tome 53 (2017) no. 2, pp. 101-109.
Voir la notice de l'article dans Czech Digital Mathematics Library
A stronger version of the notion of frame in Banach space called Strong Retro Banach frame (SRBF) is defined and studied. It has been proved that if $\mathcal{X}$ is a Banach space such that $\mathcal{X^*}$ has a SRBF, then $\mathcal{X}$ has a Bi-Banach frame with some geometric property. Also, it has been proved that if a Banach space $\mathcal{X}$ has an approximative Schauder frame, then $\mathcal{X^*}$ has a SRBF. Finally, the existence of a non-linear SRBF in the conjugate of a separable Banach space has been proved.
DOI :
10.5817/AM2017-2-101
Classification :
42C15, 46B15
Mots-clés : Banach frames; retro Banach frames; approximative Schauder frames
Mots-clés : Banach frames; retro Banach frames; approximative Schauder frames
@article{10_5817_AM2017_2_101, author = {Jahan, Shah and Kumar, Varinder and Kaushik, S.K.}, title = {On the existence of non-linear frames}, journal = {Archivum mathematicum}, pages = {101--109}, publisher = {mathdoc}, volume = {53}, number = {2}, year = {2017}, doi = {10.5817/AM2017-2-101}, mrnumber = {3672784}, zbl = {06770055}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-2-101/} }
TY - JOUR AU - Jahan, Shah AU - Kumar, Varinder AU - Kaushik, S.K. TI - On the existence of non-linear frames JO - Archivum mathematicum PY - 2017 SP - 101 EP - 109 VL - 53 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-2-101/ DO - 10.5817/AM2017-2-101 LA - en ID - 10_5817_AM2017_2_101 ER -
Jahan, Shah; Kumar, Varinder; Kaushik, S.K. On the existence of non-linear frames. Archivum mathematicum, Tome 53 (2017) no. 2, pp. 101-109. doi : 10.5817/AM2017-2-101. https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-2-101/
Cité par Sources :