On the existence of non-linear frames
Archivum mathematicum, Tome 53 (2017) no. 2, pp. 101-109.

Voir la notice de l'article dans Czech Digital Mathematics Library

A stronger version of the notion of frame in Banach space called Strong Retro Banach frame (SRBF) is defined and studied. It has been proved that if $\mathcal{X}$ is a Banach space such that $\mathcal{X^*}$ has a SRBF, then $\mathcal{X}$ has a Bi-Banach frame with some geometric property. Also, it has been proved that if a Banach space $\mathcal{X}$ has an approximative Schauder frame, then $\mathcal{X^*}$ has a SRBF. Finally, the existence of a non-linear SRBF in the conjugate of a separable Banach space has been proved.
DOI : 10.5817/AM2017-2-101
Classification : 42C15, 46B15
Mots-clés : Banach frames; retro Banach frames; approximative Schauder frames
@article{10_5817_AM2017_2_101,
     author = {Jahan, Shah and Kumar, Varinder and Kaushik, S.K.},
     title = {On the existence of non-linear frames},
     journal = {Archivum mathematicum},
     pages = {101--109},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2017},
     doi = {10.5817/AM2017-2-101},
     mrnumber = {3672784},
     zbl = {06770055},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-2-101/}
}
TY  - JOUR
AU  - Jahan, Shah
AU  - Kumar, Varinder
AU  - Kaushik, S.K.
TI  - On the existence of non-linear frames
JO  - Archivum mathematicum
PY  - 2017
SP  - 101
EP  - 109
VL  - 53
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-2-101/
DO  - 10.5817/AM2017-2-101
LA  - en
ID  - 10_5817_AM2017_2_101
ER  - 
%0 Journal Article
%A Jahan, Shah
%A Kumar, Varinder
%A Kaushik, S.K.
%T On the existence of non-linear frames
%J Archivum mathematicum
%D 2017
%P 101-109
%V 53
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-2-101/
%R 10.5817/AM2017-2-101
%G en
%F 10_5817_AM2017_2_101
Jahan, Shah; Kumar, Varinder; Kaushik, S.K. On the existence of non-linear frames. Archivum mathematicum, Tome 53 (2017) no. 2, pp. 101-109. doi : 10.5817/AM2017-2-101. https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-2-101/

Cité par Sources :