A note on another construction of graphs with $4n+6$ vertices and cyclic automorphism group of order $4n$
Archivum mathematicum, Tome 53 (2017) no. 1, pp. 13-18.
Voir la notice de l'article dans Czech Digital Mathematics Library
The problem of finding minimal vertex number of graphs with a given automorphism group is addressed in this article for the case of cyclic groups. This problem was considered earlier by other authors. We give a construction of an undirected graph having $4n+6$ vertices and automorphism group cyclic of order $4n$, $n\ge 1$. As a special case we get graphs with $2^k+6$ vertices and cyclic automorphism groups of order $2^k$. It can revive interest in related problems.
DOI :
10.5817/AM2017-1-13
Classification :
05C25, 05C35, 05C75, 05E18
Mots-clés : graph; automorphism group
Mots-clés : graph; automorphism group
@article{10_5817_AM2017_1_13, author = {Daugulis, Peteris}, title = {A note on another construction of graphs with $4n+6$ vertices and cyclic automorphism group of order $4n$}, journal = {Archivum mathematicum}, pages = {13--18}, publisher = {mathdoc}, volume = {53}, number = {1}, year = {2017}, doi = {10.5817/AM2017-1-13}, mrnumber = {3636678}, zbl = {06738495}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-1-13/} }
TY - JOUR AU - Daugulis, Peteris TI - A note on another construction of graphs with $4n+6$ vertices and cyclic automorphism group of order $4n$ JO - Archivum mathematicum PY - 2017 SP - 13 EP - 18 VL - 53 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-1-13/ DO - 10.5817/AM2017-1-13 LA - en ID - 10_5817_AM2017_1_13 ER -
%0 Journal Article %A Daugulis, Peteris %T A note on another construction of graphs with $4n+6$ vertices and cyclic automorphism group of order $4n$ %J Archivum mathematicum %D 2017 %P 13-18 %V 53 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-1-13/ %R 10.5817/AM2017-1-13 %G en %F 10_5817_AM2017_1_13
Daugulis, Peteris. A note on another construction of graphs with $4n+6$ vertices and cyclic automorphism group of order $4n$. Archivum mathematicum, Tome 53 (2017) no. 1, pp. 13-18. doi : 10.5817/AM2017-1-13. https://geodesic-test.mathdoc.fr/articles/10.5817/AM2017-1-13/
Cité par Sources :