Distinguished connections on (J2=±1)-metric manifolds
Archivum mathematicum, Tome 52 (2016) no. 3, pp. 159-203.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study several linear connections (the first canonical, the Chern, the well adapted, the Levi Civita, the Kobayashi-Nomizu, the Yano, the Bismut and those with totally skew-symmetric torsion) which can be defined on the four geometric types of (J2=±1)-metric manifolds. We characterize when such a connection is adapted to the structure, and obtain a lot of results about coincidence among connections. We prove that the first canonical and the well adapted connections define a one-parameter family of adapted connections, named canonical connections, thus extending to almost Norden and almost product Riemannian manifolds the families introduced in almost Hermitian and almost para-Hermitian manifolds in [13] and [18]. We also prove that every connection studied in this paper is a canonical connection, when it exists and it is an adapted connection.
DOI : 10.5817/AM2016-3-159
Classification : 53C05, 53C07, 53C15, 53C50
Mots-clés : (J2=±1)-metric manifold; α-structure; natural connection; Nijenhuis tensor; second Nijenhuis tensor; Kobayashi-Nomizu connection; first canonical connection; well adapted connection; connection with totally skew-symmetric torsion; canonical connection
@article{10_5817_AM2016_3_159,
     author = {Etayo, Fernando and Santamar{\'\i}a, Rafael},
     title = {Distinguished connections on $(J^{2}=\pm 1)$-metric manifolds},
     journal = {Archivum mathematicum},
     pages = {159--203},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2016},
     doi = {10.5817/AM2016-3-159},
     mrnumber = {3553174},
     zbl = {06644065},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.5817/AM2016-3-159/}
}
TY  - JOUR
AU  - Etayo, Fernando
AU  - Santamaría, Rafael
TI  - Distinguished connections on $(J^{2}=\pm 1)$-metric manifolds
JO  - Archivum mathematicum
PY  - 2016
SP  - 159
EP  - 203
VL  - 52
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.5817/AM2016-3-159/
DO  - 10.5817/AM2016-3-159
LA  - en
ID  - 10_5817_AM2016_3_159
ER  - 
%0 Journal Article
%A Etayo, Fernando
%A Santamaría, Rafael
%T Distinguished connections on $(J^{2}=\pm 1)$-metric manifolds
%J Archivum mathematicum
%D 2016
%P 159-203
%V 52
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.5817/AM2016-3-159/
%R 10.5817/AM2016-3-159
%G en
%F 10_5817_AM2016_3_159
Etayo, Fernando; Santamaría, Rafael. Distinguished connections on $(J^{2}=\pm 1)$-metric manifolds. Archivum mathematicum, Tome 52 (2016) no. 3, pp. 159-203. doi : 10.5817/AM2016-3-159. https://geodesic-test.mathdoc.fr/articles/10.5817/AM2016-3-159/
  • Azami, Shahroud Generalized Ricci solitons associated to perturbed canonical connection and perturbed Kobayashi-Nomizu connection on three-dimensional Lorentzian Lie groups, Afrika Matematika, Volume 35 (2024) no. 2, p. 27 (Id/No 36) | DOI:10.1007/s13370-024-01184-7 | Zbl:1549.58007
  • Azami, Shahroud Affine algebraic Ricci solitons associated to the Yano connections on three-dimensional Lorentzian Lie groups, Journal of Nonlinear Mathematical Physics, Volume 31 (2024) no. 1, p. 22 (Id/No 14) | DOI:10.1007/s44198-024-00178-0 | Zbl:1535.53025
  • Yang, Jinli; Miao, Jiajing Algebraic Schouten solitons of Lorentzian Lie groups with Yano connections, Communications in Analysis and Mechanics, Volume 15 (2023) no. 4, pp. 763-791 | DOI:10.3934/cam.2023037 | Zbl:1547.53073
  • Azami, Shahroud Generalized Ricci solitons of three-dimensional Lorentzian Lie groups associated canonical connections and Kobayashi-nomizu connections, Journal of Nonlinear Mathematical Physics, Volume 30 (2023) no. 1, pp. 1-33 | DOI:10.1007/s44198-022-00069-2 | Zbl:1509.58003
  • Azami, Shahroud Affine generalized Ricci solitons of three-dimensional Lorentzian Lie groups associated to Yano connection, Journal of Nonlinear Mathematical Physics, Volume 30 (2023) no. 2, pp. 719-742 | DOI:10.1007/s44198-022-00104-2 | Zbl:1519.53020
  • Liu, H.; Guan, J. Gauss-Bonnet theorems for Lorentzian and spacelike surfaces associated to canonical connections in the Lorentzian Heisenberg group, Siberian Mathematical Journal, Volume 64 (2023) no. 2, pp. 471-499 | DOI:10.1134/s0037446623020192 | Zbl:1519.53057
  • Blaga, Adara Monica; Kumar, Rakesh; Rani, Rachna On the geometry of complex metallic Norden manifolds, Bulletin of the Korean Mathematical Society, Volume 59 (2022) no. 5, pp. 1069-1091 | DOI:10.4134/bkms.b210190 | Zbl:1507.53023
  • Wang, Yong Canonical connections and algebraic Ricci solitons of three-dimensional Lorentzian Lie groups, Chinese Annals of Mathematics. Series B, Volume 43 (2022) no. 3, pp. 443-458 | DOI:10.1007/s11401-022-0334-5 | Zbl:1506.53028
  • Etayo, Fernando; de Francisco, Araceli; Santamaria, Rafael Unified classification of pure metric geometries, Hacettepe Journal of Mathematics and Statistics, Volume 51 (2022) no. 1, pp. 113-141 | DOI:10.15672/hujms.899894 | Zbl:1499.53118
  • Etayo, Fernando; Gómez-Nicolás, Pablo; Santamaria, Rafael Induced polynomial structures on generalized geometry, Turkish Journal of Mathematics, Volume 46 (2022) no. 4, pp. 1492-1507 | DOI:10.55730/1300-0098.3175 | Zbl:1506.53089
  • Wang, Yong Affine connections on singular warped products, International Journal of Geometric Methods in Modern Physics, Volume 18 (2021) no. 5, p. 24 (Id/No 2150076) | DOI:10.1142/s0219887821500766 | Zbl:7830913
  • Wang, Yong Affine Ricci solitons of three-dimensional Lorentzian Lie groups, Journal of Nonlinear Mathematical Physics, Volume 28 (2021) no. 3, pp. 277-291 | DOI:10.2991/jnmp.k.210203.001 | Zbl:1497.53147
  • Etayo, Fernando; Santamaría, Rafael Classification of almost Golden Riemannian manifolds with null trace, Mediterranean Journal of Mathematics, Volume 17 (2020) no. 3, p. 19 (Id/No 90) | DOI:10.1007/s00009-020-01528-0 | Zbl:1440.53028
  • Zhong, Shiping; Zhao, Zehui; Mu, Gui Structure-preserving connections on almost complex Norden golden manifolds, Journal of Geometry, Volume 110 (2019) no. 3, p. 20 (Id/No 55) | DOI:10.1007/s00022-019-0511-1 | Zbl:1433.53052
  • Etayo, Fernando; de Francisco, Araceli; Santamaría, Rafael The Chern connection of a (J2=±1)-metric manifold of class G1, Mediterranean Journal of Mathematics, Volume 15 (2018) no. 4, p. 20 (Id/No 157) | DOI:10.1007/s00009-018-1207-8 | Zbl:1397.53043
  • Druţă-Romaniuc, Simona-Luiza General natural (α,ε)-structures, Mediterranean Journal of Mathematics, Volume 15 (2018) no. 6, p. 13 (Id/No 228) | DOI:10.1007/s00009-018-1271-0 | Zbl:1411.53023
  • Etayo, Fernando; Santamaría, Rafael; Upadhyay, Abhitosh On the geometry of almost Golden Riemannian manifolds, Mediterranean Journal of Mathematics, Volume 14 (2017) no. 5, p. 14 (Id/No 187) | DOI:10.1007/s00009-017-0991-x | Zbl:1377.53041

Cité par 17 documents. Sources : zbMATH