The G-graded identities of the Grassmann Algebra
Archivum mathematicum, Tome 52 (2016) no. 3, pp. 141-158.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let G be a finite abelian group with identity element 1G and L=gGLg be an infinite dimensional G-homogeneous vector space over a field of characteristic 0. Let E=E(L) be the Grassmann algebra generated by L. It follows that E is a G-graded algebra. Let |G| be odd, then we prove that in order to describe any ideal of G-graded identities of E it is sufficient to deal with G-grading, where |G||G|, dimFL1G= and dimFLg if g1G. In the same spirit of the case |G| odd, if |G| is even it is sufficient to study only those G-gradings such that dimFLg=, where o(g)=2, and all the other components are finite dimensional. We also compute graded cocharacters and codimensions of E in the case dimL1G= and dimLg if g1G.
DOI : 10.5817/AM2016-3-141
Classification : 16P90, 16R10, 16S10, 16W50
Mots-clés : graded polynomial identities
@article{10_5817_AM2016_3_141,
     author = {Centrone, Lucio},
     title = {The $G$-graded identities of the {Grassmann} {Algebra}},
     journal = {Archivum mathematicum},
     pages = {141--158},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2016},
     doi = {10.5817/AM2016-3-141},
     mrnumber = {3553173},
     zbl = {06644064},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.5817/AM2016-3-141/}
}
TY  - JOUR
AU  - Centrone, Lucio
TI  - The $G$-graded identities of the Grassmann Algebra
JO  - Archivum mathematicum
PY  - 2016
SP  - 141
EP  - 158
VL  - 52
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.5817/AM2016-3-141/
DO  - 10.5817/AM2016-3-141
LA  - en
ID  - 10_5817_AM2016_3_141
ER  - 
%0 Journal Article
%A Centrone, Lucio
%T The $G$-graded identities of the Grassmann Algebra
%J Archivum mathematicum
%D 2016
%P 141-158
%V 52
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.5817/AM2016-3-141/
%R 10.5817/AM2016-3-141
%G en
%F 10_5817_AM2016_3_141
Centrone, Lucio. The $G$-graded identities of the Grassmann Algebra. Archivum mathematicum, Tome 52 (2016) no. 3, pp. 141-158. doi : 10.5817/AM2016-3-141. https://geodesic-test.mathdoc.fr/articles/10.5817/AM2016-3-141/
  • de França, Antonio; Sviridova, Irina Irreducible graded bimodules over algebras and a Pierce decomposition of the Jacobson radical, Communications in Algebra, Volume 52 (2024) no. 10, pp. 4226-4254 | DOI:10.1080/00927872.2024.2343774 | Zbl:7909486
  • Fideles, Claudemir; Gomes, Ana Beatriz; Grishkov, Alexandre; Guimarães, Alan A characterization of the natural grading of the Grassmann algebra and its non-homogeneous Z2-gradings, Linear Algebra and its Applications, Volume 680 (2024), pp. 93-107 | DOI:10.1016/j.laa.2023.10.002 | Zbl:1527.15029
  • Fideles, Claudemir; Guimarães, Alan Z-gradings on the Grassmann algebra over infinite fields: graded identities and central polynomials, International Journal of Algebra and Computation, Volume 33 (2023) no. 8, pp. 1713-1735 | DOI:10.1142/s0218196723500650 | Zbl:1542.15031
  • Guimarães, Alan de Araújo; Koshlukov, Plamen Automorphisms and superalgebra structures on the Grassmann algebra, Journal of Pure and Applied Algebra, Volume 227 (2023) no. 1, p. 20 (Id/No 107166) | DOI:10.1016/j.jpaa.2022.107166 | Zbl:1528.16037
  • Fidelis, Claudemir; Guimarães, Alan; Koshlukov, Plamen A note on Z-gradings on the Grassmann algebra and elementary number theory, Linear and Multilinear Algebra, Volume 71 (2023) no. 7, pp. 1244-1264 | DOI:10.1080/03081087.2022.2059433 | Zbl:1526.16020
  • Brandão, Antônio; Fidelis, Claudemir; Guimarães, Alan Z-gradings of full support on the Grassmann algebra, Journal of Algebra, Volume 601 (2022), pp. 332-353 | DOI:10.1016/j.jalgebra.2022.03.014 | Zbl:1504.16039
  • Fidelis, Claudemir Z-graded identities on the infinite-dimensional Grassmann algebra and arithmetic tools: revisited, Turkish Journal of Mathematics, Volume 46 (2022) no. 5, pp. 1814-1827 | DOI:10.55730/1300-0098.3234 | Zbl:1497.15031
  • de Araújo Guimarães, Alan On the support of (R,+)-gradings on the Grassmann algebra, Communications in Algebra, Volume 49 (2021) no. 2, pp. 747-762 | DOI:10.1080/00927872.2020.1817471 | Zbl:1461.15031
  • Guimarães, Alan; Fidelis, Claudemir; Dias, Laise Zq-graded identities and central polynomials of the Grassmann algebra, Linear Algebra and its Applications, Volume 609 (2021), pp. 12-36 | DOI:10.1016/j.laa.2020.08.014 | Zbl:1470.16046
  • de Araújo Guimarães, Alan; Koshlukov, Plamen Z-graded polynomial identities of the Grassmann algebra, Linear Algebra and its Applications, Volume 617 (2021), pp. 190-214 | DOI:10.1016/j.laa.2021.02.001 | Zbl:1473.16018
  • Centrone, Lucio On the graded identities of the Grassmann algebra, Journal of Algebra, Combinatorics, Discrete Structures and Applications, Volume 4 (2017) no. 2, pp. 165-180 | Zbl:1425.16014

Cité par 11 documents. Sources : zbMATH