Asymptotic integration of differential equations with singular p-Laplacian
Archivum mathematicum, Tome 52 (2016) no. 1, pp. 13-19.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we deal with the problem of asymptotic integration of nonlinear differential equations with pLaplacian, where 1p2. We prove sufficient conditions under which all solutions of an equation from this class are converging to a linear function as t.
DOI : 10.5817/AM2016-1-13
Classification : 34D05, 35B40
Mots-clés : p-Laplacian; differential equation; asymptotic integration
@article{10_5817_AM2016_1_13,
     author = {Medve\v{d}, Milan and Pek\'arkov\'a, Eva},
     title = {Asymptotic integration of differential equations with singular $p${-Laplacian}},
     journal = {Archivum mathematicum},
     pages = {13--19},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2016},
     doi = {10.5817/AM2016-1-13},
     mrnumber = {3475109},
     zbl = {06562205},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.5817/AM2016-1-13/}
}
TY  - JOUR
AU  - Medveď, Milan
AU  - Pekárková, Eva
TI  - Asymptotic integration of differential equations with singular $p$-Laplacian
JO  - Archivum mathematicum
PY  - 2016
SP  - 13
EP  - 19
VL  - 52
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.5817/AM2016-1-13/
DO  - 10.5817/AM2016-1-13
LA  - en
ID  - 10_5817_AM2016_1_13
ER  - 
%0 Journal Article
%A Medveď, Milan
%A Pekárková, Eva
%T Asymptotic integration of differential equations with singular $p$-Laplacian
%J Archivum mathematicum
%D 2016
%P 13-19
%V 52
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.5817/AM2016-1-13/
%R 10.5817/AM2016-1-13
%G en
%F 10_5817_AM2016_1_13
Medveď, Milan; Pekárková, Eva. Asymptotic integration of differential equations with singular $p$-Laplacian. Archivum mathematicum, Tome 52 (2016) no. 1, pp. 13-19. doi : 10.5817/AM2016-1-13. https://geodesic-test.mathdoc.fr/articles/10.5817/AM2016-1-13/

Cité par Sources :