Voir la notice de l'article provenant de la source Numdam
Let
Soit
Freitas, Nuno 1 ; Siksek, Samir 2
@article{JTNB_2015__27_1_67_0, author = {Freitas, Nuno and Siksek, Samir}, title = {Criteria for {Irreducibility} of mod $p$ {Representations} of {Frey} {Curves}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {67--76}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {27}, number = {1}, year = {2015}, doi = {10.5802/jtnb.894}, mrnumber = {3346965}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5802/jtnb.894/} }
TY - JOUR AU - Freitas, Nuno AU - Siksek, Samir TI - Criteria for Irreducibility of mod $p$ Representations of Frey Curves JO - Journal de théorie des nombres de Bordeaux PY - 2015 SP - 67 EP - 76 VL - 27 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://geodesic-test.mathdoc.fr/articles/10.5802/jtnb.894/ DO - 10.5802/jtnb.894 LA - en ID - JTNB_2015__27_1_67_0 ER -
%0 Journal Article %A Freitas, Nuno %A Siksek, Samir %T Criteria for Irreducibility of mod $p$ Representations of Frey Curves %J Journal de théorie des nombres de Bordeaux %D 2015 %P 67-76 %V 27 %N 1 %I Société Arithmétique de Bordeaux %U https://geodesic-test.mathdoc.fr/articles/10.5802/jtnb.894/ %R 10.5802/jtnb.894 %G en %F JTNB_2015__27_1_67_0
Freitas, Nuno; Siksek, Samir. Criteria for Irreducibility of mod $p$ Representations of Frey Curves. Journal de théorie des nombres de Bordeaux, Tome 27 (2015) no. 1, pp. 67-76. doi : 10.5802/jtnb.894. https://geodesic-test.mathdoc.fr/articles/10.5802/jtnb.894/
[1] M.A. Bennett, I. Chen, S.R. Dahmen and S. Yazdani, Generalized Fermat equations: a miscellany, preprint, (2013). | MR
[2] M.A. Bennett, S.R. Dahmen, M. Mignotte and S. Siksek, Shifted powers in binary recurrence sequences, Mathematical Proceedings Cambridge Philosophical Society, 158, (2015), 305–329. | MR
[3] C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of elliptic curves over
[4] H. Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM 240, Springer-Verlag, (2007). | Zbl | MR
[5] A. David, Caractère d’isogénie et critéres d’irréductibilité, arXiv:1103.3892v2.
[6] L. Dieulefait and N. Freitas, Fermat-type equations of signature
[7] N. Freitas, Recipes to Fermat-type equations of the form
[8] N. Freitas and S. Siksek, The asymptotic Fermat’s last theorem for five-sixths of real quadratic fields, Compositio Mathematica, to appear.
[9] N. Freitas, B.V. Le Hung and S. Siksek, Elliptic curves over real quadratic fields are modular, Inventiones Mathematicae, to appear.
[10] K. Fujiwara, Level optimisation in the totally real case, arXiv:math/0602586v1.
[11] F. Jarvis, Level lowering for modular mod
[12] F. Jarvis, Correspondences on Shimura curves and Mazur’s principle at
[13] A. Kraus, Courbes elliptiques semi-stables et corps quadratiques, Journal of Number Theory 60, (1996), 245–253. | Zbl | MR
[14] A. Kraus, Courbes elliptiques semi-stables sur les corps de nombres, International Journal of Number Theory 3, (2007), 611–633. | Zbl | MR
[15] B. Mazur, Rational isogenies of prime degree, Inventiones Math. 44, (1978), 129–162. | Zbl | MR
[16] L. Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent.Math. 124, (1996), 437–449. | Zbl | MR
[17] F. Momose, Isogenies of prime degree over number fields, Compositio Mathematica, 97, (1995), 329–348. | Zbl | MR | mathdoc-id
[18] A. Rajaei, On the levels of mod
[19] K.A. Ribet, On modular representations of
[20] J.-P. Serre, Properiétés galoisiennes des points d’ordre fini des courbes elliptiques, Inventiones Math., 15, (1972), 259–331. | Zbl | MR
[21] S. Siksek, The modular approach to Diophantine equations, chapter 15 of [4].
[22] R. Taylor and A. Wiles, Ring-theoretic properties of certain Hecke algebras, Annals of Mathematics 141, 3 (1995), 553–572. | Zbl | MR
[23] A. Wiles, Modular elliptic curves and Fermat’s Last Theorem, Annals of Mathematics 141, 3 (1995), 443–551. | Zbl | MR
Cité par Sources :