Voir la notice de l'article provenant de la source Numdam
Let
Soient
Hosseini, Bamdad 1 ; Steinerberger, Stefan 2
@article{CRMATH_2022__360_G10_1173_0, author = {Hosseini, Bamdad and Steinerberger, Stefan}, title = {Intrinsic {Sparsity} of {Kantorovich} solutions}, journal = {Comptes Rendus. Math\'ematique}, pages = {1173--1175}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G10}, year = {2022}, doi = {10.5802/crmath.392}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.392/} }
TY - JOUR AU - Hosseini, Bamdad AU - Steinerberger, Stefan TI - Intrinsic Sparsity of Kantorovich solutions JO - Comptes Rendus. Mathématique PY - 2022 SP - 1173 EP - 1175 VL - 360 IS - G10 PB - Académie des sciences, Paris UR - https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.392/ DO - 10.5802/crmath.392 LA - en ID - CRMATH_2022__360_G10_1173_0 ER -
%0 Journal Article %A Hosseini, Bamdad %A Steinerberger, Stefan %T Intrinsic Sparsity of Kantorovich solutions %J Comptes Rendus. Mathématique %D 2022 %P 1173-1175 %V 360 %N G10 %I Académie des sciences, Paris %U https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.392/ %R 10.5802/crmath.392 %G en %F CRMATH_2022__360_G10_1173_0
Hosseini, Bamdad; Steinerberger, Stefan. Intrinsic Sparsity of Kantorovich solutions. Comptes Rendus. Mathématique, Tome 360 (2022) no. G10, pp. 1173-1175. doi : 10.5802/crmath.392. https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.392/
[1] Tres observaciones sobre el algebra lineal, Rev., Ser. A, Univ. Nac. Tucumán, Volume 5 (1946), pp. 147-151 | Zbl
[2] Remarks on the Monge-Kantorovich problem in the discrete setting, C. R. Math. Acad. Sci. Paris, Volume 356 (2018) no. 2, pp. 207-213 | DOI | MR | Zbl
[3] Theorie der endlichen und unendlichen Graphen, Teubner-Archiv zur Mathematik, 6, Teubner, 1936 | Zbl
[4] Optimal transport: discretization and algorithms, Geometric partial differential equations. Part 2 (Handbook of Numerical Analysis), Volume 22, Elsevier, 2021, pp. 133-212 | DOI | MR | Zbl
[5] A certain zero-sum two-person game equivalent to an optimal assignment problem, Contributions to the theory of games. Vol. 2 (Annals of Mathematics Studies), Volume 28, Princeton University Press, 1953, pp. 5-12 | MR | Zbl
[6] Computational optimal transport: With applications to data science, Found. Trends Mach. Learn., Volume 11 (2018) no. 5-6, pp. 355-407 | DOI | Zbl
Cité par Sources :