Théorie des représentations
The Horn cone associated with symplectic eigenvalues
Comptes Rendus. Mathématique, Tome 360 (2022) no. G10, pp. 1163-1168.

Voir la notice de l'article provenant de la source Numdam

In this note, we show that the Horn cone associated with symplectic eigenvalues admits the same inequalities as the classical Horn cone, except that the equality corresponding to Tr(C)=Tr(A)+Tr(B) is replaced by the inequality corresponding to Tr(C)Tr(A)+Tr(B).

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.383
Classification : 00X99

Paradan, Paul-Emile 1

1 IMAG, Univ Montpellier, CNRS, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2022__360_G10_1163_0,
     author = {Paradan, Paul-Emile},
     title = {The {Horn} cone associated with symplectic eigenvalues},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1163--1168},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     number = {G10},
     year = {2022},
     doi = {10.5802/crmath.383},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.383/}
}
TY  - JOUR
AU  - Paradan, Paul-Emile
TI  - The Horn cone associated with symplectic eigenvalues
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 1163
EP  - 1168
VL  - 360
IS  - G10
PB  - Académie des sciences, Paris
UR  - https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.383/
DO  - 10.5802/crmath.383
LA  - en
ID  - CRMATH_2022__360_G10_1163_0
ER  - 
%0 Journal Article
%A Paradan, Paul-Emile
%T The Horn cone associated with symplectic eigenvalues
%J Comptes Rendus. Mathématique
%D 2022
%P 1163-1168
%V 360
%N G10
%I Académie des sciences, Paris
%U https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.383/
%R 10.5802/crmath.383
%G en
%F CRMATH_2022__360_G10_1163_0
Paradan, Paul-Emile. The Horn cone associated with symplectic eigenvalues. Comptes Rendus. Mathématique, Tome 360 (2022) no. G10, pp. 1163-1168. doi : 10.5802/crmath.383. https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.383/

[1] Belkale, Prakash Local systems on -S for S a finite set, Compos. Math., Volume 129 (2001) no. 1, pp. 67-86 | DOI | MR | Zbl

[2] Bhatia, Rajendra; Jain, Tanvi Variational principles for symplectic eigenvalues, Can. Math. Bull., Volume 64 (2021) no. 3, pp. 553-559 | DOI | MR | Zbl

[3] Brion, Michel Restrictions de representations et projections d’orbites coadjointes (d’après Belkale, Kumar et Ressayre), 2011 (Séminaire Bourbaki, http://www.bourbaki.ens.fr/TEXTES/1043.pdf) | Zbl

[4] Friedland, Shmuel Finite and infinite dimensional generalizations of Klyachko’s theorem, Linear Algebra Appl., Volume 319 (2000) no. 1-3, pp. 3-22 | DOI | MR | Zbl

[5] Fulton, William Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. Am. Math. Soc., Volume 37 (2000) no. 3, pp. 209-249 | DOI | MR | Zbl

[6] Fulton, William Eigenvalues of majorized Hermitian matrices and Littlewood-Richardson coefficients, Linear Algebra Appl., Volume 319 (2000) no. 1-3, pp. 23-36 | DOI | MR | Zbl

[7] Hiroshima, Tohya Additivity and multiplicativity properties of some Gaussian channels for Gaussian inputs, Phys. Rev. A, Volume 73 (2006) no. 1, 012330, 9 pages | Zbl | DOI

[8] Jain, Tanvi; Mishra, Hemant K. Derivatives of symplectic eigenvalues and a Lidskii type theorem, Can. J. Math., Volume 74 (2020) no. 2, pp. 457-485 | DOI | MR | Zbl

[9] Kirwan, Frances Convexity properties of the moment mapping III, Invent. Math., Volume 77 (1984), pp. 547-552 | DOI | MR | Zbl

[10] Klyachko, Alexander A. Stable bundles, representation theory and Hermitian operators, Sel. Math., New Ser., Volume 4 (1998) no. 3, pp. 419-445 | MR | DOI | Zbl

[11] Knutson, Allen; Tao, Terence; Woodward, Christopher The honeycomb model of GLn() tensor products II: Puzzles determine facets of the Littlewood-Richardson cone, J. Am. Math. Soc., Volume 17 (2004) no. 1, pp. 19-48 | DOI | MR | Zbl

[12] Lerman, Eugene; Meinrenken, Eckhard; Tolman, Sue; Woodward, Christopher Non-Abelian convexity by symplectic cuts, Topology, Volume 37 (1998) no. 2, pp. 245-259 | DOI | Zbl

[13] Paneitz, Stephen M. Invariant convex cones and causality in semisimple Lie algebras and groups, J. Funct. Anal, Volume 43 (1981), pp. 313-359 | DOI | MR | Zbl

[14] Paneitz, Stephen M. Determination of invariant convex cones in simple Lie algebras, Ark. Mat., Volume 21 (1983), pp. 217-228 | DOI | MR | Zbl

[15] Paradan, Paul-Emile Horn problem for quasi-hermitian Lie groups, J. Inst. Math. Jussieu (2022), pp. 1-27 | DOI

[16] Vinberg, Èrnest B. Invariant convex cones and orderings in Lie groups, Funct. Anal. Appl., Volume 14 (1980), pp. 1-10 | DOI | MR | Zbl

[17] Weinstein, Alan Poisson geometry of discrete series orbits and momentum convexity for noncompact group actions, Lett. Math. Phys., Volume 56 (2001) no. 1, pp. 17-30 | DOI | MR | Zbl

[18] Williamson, John On the algebraic problem concerning the normal forms of linear dynamical systems, Am. J. Math., Volume 58 (1936), pp. 141-163 | DOI | MR | Zbl

Cité par Sources :