Voir la notice de l'article provenant de la source Numdam
Dans cet article, je montrerai que l’équation de Pell–Abel possède une solution de degré
In this paper, we show that there are solutions of degree
Gendron, Quentin 1, 2
@article{CRMATH_2022__360_G9_975_0, author = {Gendron, Quentin}, title = {\'Equation de {Pell{\textendash}Abel} et applications}, journal = {Comptes Rendus. Math\'ematique}, pages = {975--992}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G9}, year = {2022}, doi = {10.5802/crmath.346}, language = {fr}, url = {https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.346/} }
TY - JOUR AU - Gendron, Quentin TI - Équation de Pell–Abel et applications JO - Comptes Rendus. Mathématique PY - 2022 SP - 975 EP - 992 VL - 360 IS - G9 PB - Académie des sciences, Paris UR - https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.346/ DO - 10.5802/crmath.346 LA - fr ID - CRMATH_2022__360_G9_975_0 ER -
Gendron, Quentin. Équation de Pell–Abel et applications. Comptes Rendus. Mathématique, Tome 360 (2022) no. G9, pp. 975-992. doi : 10.5802/crmath.346. https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.346/
[1] Ueber die Integration der Differential-Formel
[2] Über einige Funktionen, die in gegebenen Intervallen am wenigsten von Null abweichen, Bull. Soc. Phys.-Math. Kazan, III. Ser., Volume 3 (1928) no. 2, pp. 1-69 | Zbl
[3] Strata of
[4] Torsion points of order
[5] Effective computation of Chebyshev polynomials for several intervals, Sb. Math., Volume 190 (1999) no. 11, pp. 15-50 traduction anglaise, Mat. Sb. 190, No. 11, 1571–1605 (1999) | MR | Zbl
[6] Chebyshev representation for rational functions, Sb. Math., Volume 201 (2010) no. 11, pp. 1579-1598 | MR | DOI | Zbl
[7] Extremal polynomials and Riemann surfaces, Springer Monographs in Mathematics, Springer, 2012 | DOI | Zbl
[8] Theta functions and singular torsion on elliptic curves, Number theory for the millennium I. Proceedings of the millennial conference on number theory, Peters, 2002, pp. 111-126 | Zbl
[9] On Dirichlet, Poncelet and Abel problems, Commun. Pure Appl. Anal., Volume 12 (2013) no. 4, pp. 1587-1633 | MR | DOI | Zbl
[10] Poncelet porisms and beyond. Integrable billiards, hyperelliptic Jacobians and pencils of quadrics, Frontiers in Mathematics, Birkhäuser, 2011 | Zbl
[11] Periodic Ellipsoidal Billiard Trajectories and Extremal Polynomials, Commun. Math. Phys., Volume 372 (2019) no. 1, pp. 183-211 | MR | DOI | Zbl
[12]
[13] Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, 1994 (Reprint of the 1978 original) | DOI | Zbl
[14] Sur certains sous-groupes de torsion de jacobiennes de courbes hyperelliptiques de genre
[15] Rational billiards and flat structures, Handbook of dynamical systems. Volume 1A, North-Holland, 2002, pp. 1015-1089 | DOI | Zbl
[16] Teichmüller curves in genus two : Torsion divisors and ratios of sines, Invent. Math., Volume 165 (2006) no. 3, pp. 651-672 | Zbl | DOI
[17] Combinatoire des arbres planaires et arithmétique des courbes hyperelliptiques, Ann. Inst. Fourier, Volume 48 (1998) no. 2, pp. 323-351 | mathdoc-id | MR | DOI | Zbl
[18] Uniformisation des surfaces de Riemann. Retour sur un théorème centenaire, ENS Éditions, 2010 | Zbl
[19] Distribution asymptotique des valeurs propres des endomorphismes de Frobenius (d’après Abel, Chebyshev, Robinson,...), Séminaire Bourbaki 2017/18 (70e année). Exposés 1136–1150 (Astérisque), Volume 414, Société Mathématique de France, 2019, pp. 379-426 (Exp. 1146) | Zbl
[20] Functions least deviating from zero on closed subsets of the real axis, Algebra Anal., Volume 4 (1992) no. 2, pp. 1-61 traduction anglaise, St. Petersburg Math. J., 4.2, p. 201–249, (1993) | Zbl
[21] Quadratic differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 5, Springer, 1984 | DOI | Zbl
[22] Théorie des mécanismes connus sous le nom de parallélogrammes, Mém. Acad. Sci. Pétersb, Volume 7 (1854), pp. 539-568
[23] Division by 2 on odd-degree hyperelliptic curves and their Jacobians, Izv. Math., Volume 83 (2019) no. 3, pp. 501-520 | MR | DOI | Zbl
Cité par Sources :