Voir la notice de l'article provenant de la source Numdam
This document is a short user’s guide to the theory of motives and homotopy theory in the setting of logarithmic geometry. We review some of the basic ideas and results in relation to other works on motives with modulus, motivic homotopy theory, and reciprocity sheaves.
Ce document est un petit guide d’utilisation de la théorie des motifs et de la théorie de l’homotopie dans le cadre de la géométrie logarithmique. Nous passons en revue certaines des idées de base et des résultats en relation avec d’autres travaux sur les motifs avec module, théorie de l’homotopie motivique, et les faisceaux de réciprocité.
Binda, Federico 1 ; Park, Doosung 2 ; Østvær, Paul Arne 1, 3
@article{CRMATH_2022__360_G6_717_0, author = {Binda, Federico and Park, Doosung and {\O}stv{\ae}r, Paul Arne}, title = {Motives and homotopy theory in logarithmic geometry}, journal = {Comptes Rendus. Math\'ematique}, pages = {717--727}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G6}, year = {2022}, doi = {10.5802/crmath.340}, zbl = {07547270}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.340/} }
TY - JOUR AU - Binda, Federico AU - Park, Doosung AU - Østvær, Paul Arne TI - Motives and homotopy theory in logarithmic geometry JO - Comptes Rendus. Mathématique PY - 2022 SP - 717 EP - 727 VL - 360 IS - G6 PB - Académie des sciences, Paris UR - https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.340/ DO - 10.5802/crmath.340 LA - en ID - CRMATH_2022__360_G6_717_0 ER -
%0 Journal Article %A Binda, Federico %A Park, Doosung %A Østvær, Paul Arne %T Motives and homotopy theory in logarithmic geometry %J Comptes Rendus. Mathématique %D 2022 %P 717-727 %V 360 %N G6 %I Académie des sciences, Paris %U https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.340/ %R 10.5802/crmath.340 %G en %F CRMATH_2022__360_G6_717_0
Binda, Federico; Park, Doosung; Østvær, Paul Arne. Motives and homotopy theory in logarithmic geometry. Comptes Rendus. Mathématique, Tome 360 (2022) no. G6, pp. 717-727. doi : 10.5802/crmath.340. https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.340/
[1] Une introduction aux motifs. Motifs purs, motifs mixtes, périodes, Panoramas et Synthèses, 17, Société Mathématique de France, 2004, xi+261 pages | Zbl
[2] Splitting vector bundles outside the stable range and
[3] 1-motivic sheaves and the Albanese functor, J. Pure Appl. Algebra, Volume 213 (2009) no. 5, pp. 809-839 | Zbl | MR | DOI
[4] On the derived category of 1-motives, Astérisque, 381, Société Mathématique de France, 2016, xi+254 pages | MR
[5] A logarithmic Hochschild-Kostant-Rosenberg theorem (2022) (in preparation)
[6] Connectivity and Purity for logarithmic motives (2022) (to appear in J. Inst. Math. Jussieu) | arXiv
[7] Derived log Albanese sheaves (2022) | arXiv
[8] Logarithmic motivic homotopy theory (2022) (in preparation)
[9] Triangulated categories of logarithmic motives over a field, Astérisque, 433, Société Mathématique de France, 2022
[10] On the cohomology of reciprocity sheaves (2021) | arXiv
[11] The cyclotomic trace and algebraic K-theory of spaces, Invent. Math., Volume 111 (1993) no. 3, pp. 465-539 | MR | DOI | Zbl
[12] Théorie de Hodge. II. (Hodge theory. II), Publ. Math., Inst. Hautes Étud. Sci., Volume 40 (1971), pp. 5-57 | DOI | Zbl
[13] Introduction to toric varieties. The 1989 William H. Roever lectures in geometry, Annals of Mathematics Studies, 131, Princeton University Press, 1993, xi+157 pages | Zbl
[14] Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique, Mém. Soc. Math. Fr., Nouv. Sér. (1985) no. 21, p. 87 | Zbl | MR
[15] Arbeitsgemeinschaft: Topological Cyclic Homology, Oberwolfach Rep., Volume 15 (2018) no. 2, pp. 805-940 | Zbl | MR | DOI
[16] Motivic stable homotopy groups, Handbook of homotopy theory, CRC Press, 2020, 35 pages | Zbl | DOI
[17] Motives with modulus (2019) | arXiv
[18] Reciprocity Sheaves, Compos. Math., Volume 152 (2016) no. 9, pp. 1851-1898 | Zbl | MR | DOI
[19] Higher algebra (2017) (available at http://www.math.harvard.edu/~lurie/papers/HA.pdf.)
[20] Lecture notes on motivic cohomology, Clay Mathematics Monographs, 2, American Mathematical Society; Clay Mathematics Institute, 2006, xiv+216 pages | MR
[21] Characteristic classes, Annals of Mathematics Studies, 76, Princeton University Press, 1974 | DOI | Zbl
[22]
[23]
[24]
[25]
[26] Lectures on logarithmic algebraic geometry, Cambridge Studies in Advanced Mathematics, 178, Cambridge University Press, 2018, xviii+539 pages | DOI | Zbl
[27]
[28] The first stable homotopy groups of motivic spheres, Ann. Math., Volume 189 (2019) no. 1, pp. 1-74 | MR | Zbl
[29] Reciprocity Sheaves and Logarithmic motives (2021) | arXiv
[30] Higher algebraic K-theory of schemes and of derived categories, The Grothendieck Festschrift Vol. III (Progress in Mathematics), Volume 88, Birkhäuser, 1990, pp. 347-435 | MR | Zbl
[31] Homology of schemes, Sel. Math., New Ser., Volume 2 (1996) no. 1, pp. 111-153 | MR | DOI | Zbl
[32]
[33] Motivic cohomology with
[34] Homotopy theory of simplicial sheaves in completely decomposable topologies, J. Pure Appl. Algebra, Volume 214 (2010) no. 8, pp. 1384-1398 | MR | DOI | Zbl
[35] On motivic cohomology with
[36] Cycles, transfers, and motivic homology theories, Annals of Mathematics Studies, 143, Princeton University Press, 2000, vi+254 pages | MR
Cité par 3 documents. Sources : zbMATH