Voir la notice de l'article provenant de la source Numdam
Let
Cohen, Stephen D. 1 ; Kapetanakis, Giorgos 2 ; Reis, Lucas 3
@article{CRMATH_2022__360_G6_641_0, author = {Cohen, Stephen D. and Kapetanakis, Giorgos and Reis, Lucas}, title = {The existence of $\protect \mathbb{F}_q$-primitive points on curves using freeness}, journal = {Comptes Rendus. Math\'ematique}, pages = {641--652}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G6}, year = {2022}, doi = {10.5802/crmath.328}, zbl = {07547263}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.328/} }
TY - JOUR AU - Cohen, Stephen D. AU - Kapetanakis, Giorgos AU - Reis, Lucas TI - The existence of $\protect \mathbb{F}_q$-primitive points on curves using freeness JO - Comptes Rendus. Mathématique PY - 2022 SP - 641 EP - 652 VL - 360 IS - G6 PB - Académie des sciences, Paris UR - https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.328/ DO - 10.5802/crmath.328 LA - en ID - CRMATH_2022__360_G6_641_0 ER -
%0 Journal Article %A Cohen, Stephen D. %A Kapetanakis, Giorgos %A Reis, Lucas %T The existence of $\protect \mathbb{F}_q$-primitive points on curves using freeness %J Comptes Rendus. Mathématique %D 2022 %P 641-652 %V 360 %N G6 %I Académie des sciences, Paris %U https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.328/ %R 10.5802/crmath.328 %G en %F CRMATH_2022__360_G6_641_0
Cohen, Stephen D.; Kapetanakis, Giorgos; Reis, Lucas. The existence of $\protect \mathbb{F}_q$-primitive points on curves using freeness. Comptes Rendus. Mathématique, Tome 360 (2022) no. G6, pp. 641-652. doi : 10.5802/crmath.328. https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.328/
[1] Primitive values of quadratic polynomials in a finite field, Math. Comput., Volume 88 (2019) no. 318, pp. 1903-1912 | MR | DOI | Zbl
[2] Elements of high order in Artin–Schreier extensions of finite fields
[3] Primitive roots in a finite field, Trans. Am. Math. Soc., Volume 73 (1952), pp. 373-382 | Zbl | MR | DOI
[4] On special pairs of primitive elements over a finite field, Finite Fields Appl., Volume 73 (2021), 101839, 10 pages | Zbl | MR
[5] The orders of related elements of a finite field, Ramanujan J., Volume 7 (2003) no. 1-3, pp. 169-183 | Zbl | MR | DOI
[6] The primitive normal basis theorem — without a computer, J. Lond. Math. Soc., Volume 67 (2003) no. 1, pp. 41-56 | Zbl | MR | DOI
[7] The trace of 2-primitive elements of finite fields, Acta Arith., Volume 192 (2020) no. 4, pp. 397-419 | Zbl | MR | DOI
[8] The translate and line properties for 2-primitive elements in quadratic extensions, Int. J. Number Theory, Volume 16 (2020) no. 9, pp. 2027-2040 | Zbl | MR | DOI
[9] Finite field extensions with the line or translate property for
[10] Linear combinations of primitive elements of a finite field, Finite Fields Appl., Volume 51 (2018), pp. 388-406 | Zbl | MR | DOI
[11] A proof of the conjecture of Cohen and Mullen on sums of primitive roots, Math. Comput., Volume 84 (2015) no. 296, pp. 2979-2986 | Zbl | MR | DOI
[12] Elements of provable high orders in finite fields, Proc. Am. Math. Soc., Volume 127 (1999) no. 6, pp. 1615-1623 | Zbl | MR
[13] Existence and properties of
[14] Variations of the primitive normal basis theorem, Des. Codes Cryptography, Volume 87 (2018) no. 7, pp. 1459-1480 | Zbl | MR | DOI
[15] Primitive points on elliptic curves, Bull. Am. Math. Soc., Volume 83 (1977), pp. 289-292 | Zbl | MR | DOI
[16] Finite Fields, Encyclopedia of Mathematics and Its Applications, 20, Cambridge University Press, 1996 | DOI
[17] Handbook of Finite Fields (Mullen, Gary L.; Panario, Daniel, eds.), Discrete Mathematics and its Applications, CRC Press, 2013
[18] Elements of high order in finite fields of the form
Cité par Sources :