Voir la notice de l'article provenant de la source Numdam
Let
Wang, Yu 1, 2 ; Arunachalam, Umamaheswaran 3 ; Keller, Bernhard 4
@article{CRMATH_2022__360_G5_491_0, author = {Wang, Yu and Arunachalam, Umamaheswaran and Keller, Bernhard}, title = {On the {Hochschild} homology of singularity categories}, journal = {Comptes Rendus. Math\'ematique}, pages = {491--496}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G5}, year = {2022}, doi = {10.5802/crmath.318}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.318/} }
TY - JOUR AU - Wang, Yu AU - Arunachalam, Umamaheswaran AU - Keller, Bernhard TI - On the Hochschild homology of singularity categories JO - Comptes Rendus. Mathématique PY - 2022 SP - 491 EP - 496 VL - 360 IS - G5 PB - Académie des sciences, Paris UR - https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.318/ DO - 10.5802/crmath.318 LA - en ID - CRMATH_2022__360_G5_491_0 ER -
%0 Journal Article %A Wang, Yu %A Arunachalam, Umamaheswaran %A Keller, Bernhard %T On the Hochschild homology of singularity categories %J Comptes Rendus. Mathématique %D 2022 %P 491-496 %V 360 %N G5 %I Académie des sciences, Paris %U https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.318/ %R 10.5802/crmath.318 %G en %F CRMATH_2022__360_G5_491_0
Wang, Yu; Arunachalam, Umamaheswaran; Keller, Bernhard. On the Hochschild homology of singularity categories. Comptes Rendus. Mathématique, Tome 360 (2022) no. G5, pp. 491-496. doi : 10.5802/crmath.318. https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.318/
[1] Tensor products of Leavitt path algebras, Proc. Am. Math. Soc., Volume 141 (2013) no. 8, pp. 2629-2639 | MR | Zbl
[2] Calabi–Yau algebras and superpotentials, Sel. Math., New Ser., Volume 21 (2015) no. 2, pp. 555-603 | DOI | MR | Zbl
[3] Maximal Cohen–Macaulay modules and Tate cohomology, Mathematical Surveys and Monographs, 262, American Mathematical Society, 2021 (with appendices by Luchezar L. Avramov, Benjamin Briggs, Srikanth B. Iyengar and Janina C. Letz.) | DOI | Zbl
[4] The singularity category of a quadratic monomial algebra, Q. J. Math, Volume 69 (2018) no. 3, pp. 1015-1033 | DOI | MR | Zbl
[5] The dg Leavitt algebra, singular Yoneda category and singularity category (2021) (https://arxiv.org/abs/2109.11278, with an appendix by B. Keller and Yu Wang)
[6] Homotopy categories, Leavitt path algebras, and Gorenstein projective modules, Int. Math. Res. Not., Volume 2015 (2015) no. 10, pp. 2597-2633 | DOI | MR | Zbl
[7] Hochschild (co)homology of Koszul dual pairs, J. Noncommut. Geom., Volume 13 (2019) no. 1, pp. 59-85 | DOI | MR | Zbl
[8] Deriving DG categories, Ann. Sci. Éc. Norm. Supér., Volume 27 (1994) no. 1, pp. 63-102 | DOI | MR | mathdoc-id | Zbl
[9] Invariance and localization for cyclic homology of DG algebras, J. Pure Appl. Algebra, Volume 123 (1998) no. 1-3, pp. 223-273 | DOI | MR | Zbl
[10] On differential graded categories, Proceedings of the international congress of mathematicians (ICM), Madrid, Spain, August 22–30, 2006. Volume II: Invited lectures, European Mathematical Society, 2006, pp. 151-190 | Zbl
[11] Triangulated categories of singularities and D-branes in Landau–Ginzburg models, Tr. Mat. Inst. Steklova, Volume 246 (2004), pp. 240-262 | Zbl
[12] Category equivalences involving graded modules over path algebras of quivers, Adv. Math., Volume 230 (2012) no. 4-6, pp. 1780-1810 | DOI | MR | Zbl
Cité par Sources :