Voir la notice de l'article provenant de la source Numdam
Let
Soit
Keller, Timo 1 ; Stoll, Michael 1
@article{CRMATH_2022__360_G5_483_0, author = {Keller, Timo and Stoll, Michael}, title = {Exact verification of the strong {BSD} conjecture for some absolutely simple abelian surfaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {483--489}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G5}, year = {2022}, doi = {10.5802/crmath.313}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.313/} }
TY - JOUR AU - Keller, Timo AU - Stoll, Michael TI - Exact verification of the strong BSD conjecture for some absolutely simple abelian surfaces JO - Comptes Rendus. Mathématique PY - 2022 SP - 483 EP - 489 VL - 360 IS - G5 PB - Académie des sciences, Paris UR - https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.313/ DO - 10.5802/crmath.313 LA - en ID - CRMATH_2022__360_G5_483_0 ER -
%0 Journal Article %A Keller, Timo %A Stoll, Michael %T Exact verification of the strong BSD conjecture for some absolutely simple abelian surfaces %J Comptes Rendus. Mathématique %D 2022 %P 483-489 %V 360 %N G5 %I Académie des sciences, Paris %U https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.313/ %R 10.5802/crmath.313 %G en %F CRMATH_2022__360_G5_483_0
Keller, Timo; Stoll, Michael. Exact verification of the strong BSD conjecture for some absolutely simple abelian surfaces. Comptes Rendus. Mathématique, Tome 360 (2022) no. G5, pp. 483-489. doi : 10.5802/crmath.313. https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.313/
[1] Numerical verification of the Birch and Swinnerton–Dyer conjecture for hyperelliptic curves of higher genus over
[2] The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3–4, pp. 235-265 Computational algebra and number theory (London, 1993) | MR | Zbl | DOI
[3] On the modularity of elliptic curves over
[4] A nonvanishing theorem for derivatives of automorphic
[5] On the Iwasawa main conjectures for modular forms at non-ordinary primes, 2018 (https://arxiv.org/abs/1804.10993)
[6] On the surjectivity of the Galois representations associated to non-CM elliptic curves, Can. Math. Bull., Volume 48 (2005) no. 1, pp. 16-31 (With an appendix by Ernst Kani) | MR | Zbl | DOI
[7] Second isogeny descents and the Birch and Swinnerton–Dyer conjectural formula, J. Algebra, Volume 372 (2012), pp. 673-701 | Zbl | MR | DOI
[8] Explicit determination of the images of the Galois representations attached to abelian surfaces with
[9] Empirical evidence for the Birch and Swinnerton–Dyer conjectures for modular Jacobians of genus 2 curves, Math. Comput., Volume 70 (2001) no. 236, pp. 1675-1697 | MR | Zbl | DOI
[10] Computational verification of the Birch and Swinnerton–Dyer conjecture for individual elliptic curves, Math. Comput., Volume 78 (2009) no. 268, pp. 2397-2425 | MR | Zbl | DOI
[11] Heegner points and derivatives of
[12] Table of quotient curves of modular curves
[13] Finiteness of the Shafarevich–Tate group and the group of rational points for some modular abelian varieties, Algebra Anal., Volume 1 (1989) no. 5, pp. 171-196 | MR | Zbl
[14] Modular curves and the Eisenstein ideal, Publ. Math., Inst. Hautes Étud. Sci. (1977) no. 47, pp. 33-186 (With an appendix by Mazur and M. Rapoport) | DOI | MR | mathdoc-id | Zbl
[15] Explicit isogeny descent on elliptic curves, Math. Comput., Volume 82 (2013) no. 281, pp. 513-529 | Zbl | MR | DOI
[16] Canonical heights on genus-2 Jacobians, Algebra Number Theory, Volume 10 (2016) no. 10, pp. 2153-2234 | MR | Zbl | DOI
[17] How to do a
[18] Multiplicative reduction and the cyclotomic main conjecture for
[19] The Iwasawa main conjectures for
[20] Implementing 2-descent for Jacobians of hyperelliptic curves, Acta Arith., Volume 98 (2001) no. 3, pp. 245-277 | MR | Zbl | DOI
[21] Ring-theoretic properties of certain Hecke algebras, Ann. Math., Volume 141 (1995) no. 3, pp. 553-572 | MR | Zbl | DOI
[22] Genus 2 curves over
[23] Sur les valeurs de certaines fonctions
[24]
[25] Modular elliptic curves and Fermat’s last theorem, Ann. Math., Volume 141 (1995) no. 3, pp. 443-551 | Zbl | MR | DOI
Cité par Sources :