Algèbre, Géométrie algébrique
Topological proofs of results on large fields
Comptes Rendus. Mathématique, Tome 360 (2022) no. G11, pp. 1187-1192.

Voir la notice de l'article provenant de la source Numdam

We use the recently introduced étale open topology to prove several known facts on large fields. We show that these facts lift to a quite general topological setting.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.305

Walsberg, Erik 1

1 Department of Mathematics, University of California, Irvine, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2022__360_G11_1187_0,
     author = {Walsberg, Erik},
     title = {Topological proofs of results on large fields},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1187--1192},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     number = {G11},
     year = {2022},
     doi = {10.5802/crmath.305},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.305/}
}
TY  - JOUR
AU  - Walsberg, Erik
TI  - Topological proofs of results on large fields
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 1187
EP  - 1192
VL  - 360
IS  - G11
PB  - Académie des sciences, Paris
UR  - https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.305/
DO  - 10.5802/crmath.305
LA  - en
ID  - CRMATH_2022__360_G11_1187_0
ER  - 
%0 Journal Article
%A Walsberg, Erik
%T Topological proofs of results on large fields
%J Comptes Rendus. Mathématique
%D 2022
%P 1187-1192
%V 360
%N G11
%I Académie des sciences, Paris
%U https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.305/
%R 10.5802/crmath.305
%G en
%F CRMATH_2022__360_G11_1187_0
Walsberg, Erik. Topological proofs of results on large fields. Comptes Rendus. Mathématique, Tome 360 (2022) no. G11, pp. 1187-1192. doi : 10.5802/crmath.305. https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.305/

[1] Bachmayr, Annette; Harbater, David; Hartmann, Julia; Pop, Florian Large fields in differential Galois theory, J. Inst. Math. Jussieu, Volume 20 (2021) no. 6, pp. 1931-1946 | Zbl | MR | DOI

[2] Bary-Soroker, Lior; Fehm, Arno Open problems in the theory of ample fields, Geometric and differential Galois theory (Séminaires et Congrès), Volume 27, Société Mathématique de France, 2013, pp. 1-11 | MR

[3] Fehm, Arno Subfields of ample fields. Rational maps and definability, J. Algebra, Volume 323 (2010) no. 6, pp. 1738-1744 | MR | Zbl | DOI

[4] Fehm, Arno Embeddings of function fields into ample fields, Manuscr. Math., Volume 134 (2011) no. 3-4, pp. 533-544 | Zbl | MR | DOI

[5] Harbater, David On function fields with free absolute Galois groups, J. Reine Angew. Math., Volume 632 (2009), pp. 85-103 | Zbl | MR | DOI

[6] Harbater, David; Stevenson, Katherine F. Local Galois theory in dimension two, Adv. Math., Volume 198 (2005) no. 2, pp. 623-653 | Zbl | MR | DOI

[7] Johnson, Will; Tran, Minh; Walsberg, Erik; Ye, Jinhe Étale open topology and the stable field conjecture (2021) (https://arxiv.org/abs/2009.02319)

[8] Pop, Florian Embedding problems over large fields, Ann. Math., Volume 144 (1996) no. 1, pp. 1-34 | Zbl | MR | DOI

[9] Pop, Florian Little survey on large fields - old & new, Valuation Theory in Interaction. Proceedings of the 2nd international conference and workshop on valuation theory (EMS Series of Congress Reports), European Mathematical Society, 2014, pp. 432-463 | Zbl | DOI

[10] Srinivasan, Padmavathi A virtually ample field that is not ample, Isr. J. Math., Volume 234 (2019) no. 2, pp. 769-776 | MR | Zbl | DOI

Cité par Sources :