Voir la notice de l'article provenant de la source Numdam
We first present the natural definitions of the horizontal differential, the divergence (as an adjoint operator) and a
Nous présentons d’abord les définitions naturelles de la différentielle horizontale, de la divergence (comme opérateur adjoint) et d’une forme
Bidabad, Behroz 1, 2 ; Mirshafeazadeh, Mir Ahmad 3
@article{CRMATH_2022__360_G11_1193_0, author = {Bidabad, Behroz and Mirshafeazadeh, Mir Ahmad}, title = {Harmonic vector fields and the {Hodge} {Laplacian} operator on {Finsler} geometry}, journal = {Comptes Rendus. Math\'ematique}, pages = {1193--1204}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G11}, year = {2022}, doi = {10.5802/crmath.287}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.287/} }
TY - JOUR AU - Bidabad, Behroz AU - Mirshafeazadeh, Mir Ahmad TI - Harmonic vector fields and the Hodge Laplacian operator on Finsler geometry JO - Comptes Rendus. Mathématique PY - 2022 SP - 1193 EP - 1204 VL - 360 IS - G11 PB - Académie des sciences, Paris UR - https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.287/ DO - 10.5802/crmath.287 LA - en ID - CRMATH_2022__360_G11_1193_0 ER -
%0 Journal Article %A Bidabad, Behroz %A Mirshafeazadeh, Mir Ahmad %T Harmonic vector fields and the Hodge Laplacian operator on Finsler geometry %J Comptes Rendus. Mathématique %D 2022 %P 1193-1204 %V 360 %N G11 %I Académie des sciences, Paris %U https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.287/ %R 10.5802/crmath.287 %G en %F CRMATH_2022__360_G11_1193_0
Bidabad, Behroz; Mirshafeazadeh, Mir Ahmad. Harmonic vector fields and the Hodge Laplacian operator on Finsler geometry. Comptes Rendus. Mathématique, Tome 360 (2022) no. G11, pp. 1193-1204. doi : 10.5802/crmath.287. https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.287/
[1] Initiation to global Finslerian geometry, North-Holland Mathematical Library, 68, Elsevier, 2006, 250 pages | Zbl
[2] An Introduction to Riemann–Finsler geometry, Graduate Texts in Mathematics, 200, Springer, 2000, 431 pages
[3] A Hodge decomposition theorem for Finsler spaces, C. R. Math. Acad. Sci. Paris, Volume 323 (1996) no. 1, pp. 51-56 | Zbl | MR
[4] Valeurs propres d’opérateurs différentiels du second ordre sur une variété de Finsler, Bull. Sci. Math., Volume 122 (1998) no. 5, pp. 399-408 | Zbl | DOI
[5] On Sobolev spaces and density theorems on Finsler manifolds, AUT J. Math. Comput., Volume 1 (2020) no. 1, pp. 37-45
[6] Vector fields and Ricci curvature, Bull. Am. Math. Soc., Volume 52 (1946), pp. 776-797 | Zbl | MR | DOI
[7] Analysis Now, Springer, 1994
[8] Variation problems and E-valued horizontal harmonic forms on Finsler manifolds, Publ. Math., Volume 82 (2013) no. 2, pp. 325-339 | Zbl | MR
[9] Harmonic vector fields on Landsberg manifolds, C. R. Math. Acad. Sci. Paris, Volume 352 (2014) no. 9, pp. 737-741 | Zbl | MR | DOI
[10] Harmonic vector fields on Finsler manifolds, C. R. Math. Acad. Sci. Paris, Volume 354 (2016) no. 1, pp. 101-106 | Zbl | MR | DOI
[11] Introduction to modern Finsler geometry, Higher Education Press, 2016, 393 pages | DOI
[12] On harmonic and Killing vector fields, Ann. Math., Volume 55 (1952), pp. 38-45 | MR | DOI | Zbl
[13] Integral Formulas in Riemannian Geometry, Pure and Applied Mathematics, 1, Marcel Dekker, 1970
[14] Horizontal Laplace operator in real Finsler vector bundles, Acta Math. Sci., Volume 28 (2008) no. 1, pp. 128-140 | Zbl | MR | DOI
Cité par Sources :