Voir la notice de l'article provenant de la source Numdam
The Erdős primitive set conjecture states that the sum
Lichtman, Jared Duker 1
@article{CRMATH_2022__360_G4_409_0, author = {Lichtman, Jared Duker}, title = {Translated sums of primitive sets}, journal = {Comptes Rendus. Math\'ematique}, pages = {409--414}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G4}, year = {2022}, doi = {10.5802/crmath.285}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.285/} }
TY - JOUR AU - Lichtman, Jared Duker TI - Translated sums of primitive sets JO - Comptes Rendus. Mathématique PY - 2022 SP - 409 EP - 414 VL - 360 IS - G4 PB - Académie des sciences, Paris UR - https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.285/ DO - 10.5802/crmath.285 LA - en ID - CRMATH_2022__360_G4_409_0 ER -
Lichtman, Jared Duker. Translated sums of primitive sets. Comptes Rendus. Mathématique, Tome 360 (2022) no. G4, pp. 409-414. doi : 10.5802/crmath.285. https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.285/
[1] Optimal primitive sets with restricted primes, Integers, Volume 13 (2013), A69, 10 pages | MR | Zbl
[2] High precision computation of Hardy-Littlewood constants (https://www.math.u-bordeaux.fr/~hecohen/)
[3] Note on sequences of integers no one of which is divisible by any other, J. Lond. Math. Soc., Volume 10 (1935), pp. 126-128 | MR | DOI | Zbl
[4] Note on translated sum on primitive sequences, Notes Number Theory Discrete Math., Volume 27 (2021) no. 3, pp. 39-43 | DOI
[5] Somme translatée sur des suites primitives et la conjecture d’Erdős, C. R. Math. Acad. Sci. Paris, Volume 357 (2019) no. 5, pp. 413-417 | DOI | Zbl
[6] Almost primes and the Banks–Martin conjecture, J. Number Theory, Volume 211 (2020), pp. 513-529 | MR | DOI | Zbl
[7] Mertens’ prime product formula, dissected, Integers, Volume 21A (2021), A17, 15 pages | Zbl | MR | DOI
[8] The Erdős conjecture for primitive sets, Proc. Am. Math. Soc., Volume 6 (2019), pp. 1-14 | DOI | Zbl
[9] On a problem of Erdős concerning primitive sequences, Math. Comput., Volume 60 (1993) no. 202, pp. 827-834 | Zbl
Cité par Sources :