Voir la notice de l'article provenant de la source Numdam
We provide the first known example of a finite group action on an oriented surface
Samperton, Eric G. 1
@article{CRMATH_2022__360_G2_161_0, author = {Samperton, Eric G.}, title = {Free actions on surfaces that do not extend to arbitrary actions on 3-manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {161--167}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G2}, year = {2022}, doi = {10.5802/crmath.277}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.277/} }
TY - JOUR AU - Samperton, Eric G. TI - Free actions on surfaces that do not extend to arbitrary actions on 3-manifolds JO - Comptes Rendus. Mathématique PY - 2022 SP - 161 EP - 167 VL - 360 IS - G2 PB - Académie des sciences, Paris UR - https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.277/ DO - 10.5802/crmath.277 LA - en ID - CRMATH_2022__360_G2_161_0 ER -
%0 Journal Article %A Samperton, Eric G. %T Free actions on surfaces that do not extend to arbitrary actions on 3-manifolds %J Comptes Rendus. Mathématique %D 2022 %P 161-167 %V 360 %N G2 %I Académie des sciences, Paris %U https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.277/ %R 10.5802/crmath.277 %G en %F CRMATH_2022__360_G2_161_0
Samperton, Eric G. Free actions on surfaces that do not extend to arbitrary actions on 3-manifolds. Comptes Rendus. Mathématique, Tome 360 (2022) no. G2, pp. 161-167. doi : 10.5802/crmath.277. https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.277/
[1] The Brauer group of quotient spaces of linear representations, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 51 (1987) no. 3, 688, pp. 485-516 | DOI
[2] Classifying spaces for branched coverings, Indiana Univ. Math. J., Volume 29 (1980) no. 2, pp. 229-248 | MR | Zbl | DOI
[3] Three-dimensional orbifolds and cone-manifolds, MSJ Memoirs, 5, Mathematical Society of Japan, 2000 (with a postface by Sadayoshi Kojima) | Zbl
[4] Extending free actions of finite groups on surfaces, Topology Appl., Volume 305 (2022), 107898 | MR | Zbl | DOI
[5] Homological stability for Hurwitz spaces and the Cohen–Lenstra conjecture over function fields, II (2013) (https://arxiv.org/abs/1212.0923v2)
[6] Extending finite group actions on surfaces to hyperbolic
[7] On Schottky groups with automorphism, Ann. Acad. Sci. Fenn., Math., Volume 19 (1994) no. 2, pp. 259-289 | MR | Zbl
[8] Noether’s problem and unramified Brauer groups, Asian J. Math., Volume 17 (2013) no. 4, pp. 689-713 | MR | Zbl | DOI
[9] Bogomolov multipliers of groups of order 128, Exp. Math., Volume 23 (2014) no. 2, pp. 174-180 | MR | Zbl | DOI
[10] The Bogomolov multiplier of finite simple groups, Cohomological and geometric approaches to rationality problems. New Perspectives (Bogomolov, Fedor et al., eds.) (Progress in Mathematics), Volume 282, Birkhäuser, 2010, pp. 209-217 | MR | Zbl | DOI
[11] Unramified Brauer groups of finite and infinite groups, Am. J. Math., Volume 134 (2012) no. 6, pp. 1679-1704 | MR | Zbl | DOI
[12] Unitary bordism of abelian groups, Proc. Am. Math. Soc., Volume 33 (1972), pp. 568-571 | MR | Zbl | DOI
[13] Extending finite group actions from surfaces to handlebodies, Proc. Am. Math. Soc., Volume 124 (1996) no. 9, pp. 2877-2887 | MR | Zbl | DOI
[14] Bordism of metacyclic group actions, Mich. Math. J., Volume 27 (1980) no. 2, pp. 223-233 | MR | Zbl
[15] Noether’s problem over an algebraically closed field, Invent. Math., Volume 77 (1984) no. 1, pp. 71-84 | MR | Zbl | DOI
[16] Schur-type invariants of branched
[17] Unoriented bordism and actions of finite groups, Memoirs of the American Mathematical Society, 103, American Mathematical Society, 1970 | Zbl
[18] GAP – Groups, Algorithms, and Programming, 2021 (Version 4.11.1, https://www.gap-system.org)
[19] The evenness conjecture in equivariant unitary bordism, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. II. Invited lectures (Sirakov, Boyan et al., eds.), World Scientific; Sociedade Brasileira de Matemática, 2018, pp. 1217-1239 | Zbl
[20] Private communication, 2021
Cité par 2 documents. Sources : zbMATH