Voir la notice de l'article provenant de la source Numdam
In this paper, we consider the following 1-Laplacian problem
where
Wang, Shi-Ying 1 ; Chen, Peng 1 ; Li, Lin 2
@article{CRMATH_2022__360_G4_297_0, author = {Wang, Shi-Ying and Chen, Peng and Li, Lin}, title = {Ground state solution for a non-autonomous {1-Laplacian} problem involving periodic potential in $\protect \mathbb{R}^N$}, journal = {Comptes Rendus. Math\'ematique}, pages = {297--304}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G4}, year = {2022}, doi = {10.5802/crmath.276}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.276/} }
TY - JOUR AU - Wang, Shi-Ying AU - Chen, Peng AU - Li, Lin TI - Ground state solution for a non-autonomous 1-Laplacian problem involving periodic potential in $\protect \mathbb{R}^N$ JO - Comptes Rendus. Mathématique PY - 2022 SP - 297 EP - 304 VL - 360 IS - G4 PB - Académie des sciences, Paris UR - https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.276/ DO - 10.5802/crmath.276 LA - en ID - CRMATH_2022__360_G4_297_0 ER -
%0 Journal Article %A Wang, Shi-Ying %A Chen, Peng %A Li, Lin %T Ground state solution for a non-autonomous 1-Laplacian problem involving periodic potential in $\protect \mathbb{R}^N$ %J Comptes Rendus. Mathématique %D 2022 %P 297-304 %V 360 %N G4 %I Académie des sciences, Paris %U https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.276/ %R 10.5802/crmath.276 %G en %F CRMATH_2022__360_G4_297_0
Wang, Shi-Ying; Chen, Peng; Li, Lin. Ground state solution for a non-autonomous 1-Laplacian problem involving periodic potential in $\protect \mathbb{R}^N$. Comptes Rendus. Mathématique, Tome 360 (2022) no. G4, pp. 297-304. doi : 10.5802/crmath.276. https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.276/
[1] A Berestycki–Lions type result for a class of problems involving the 1-Laplacian operator, Commun. Contemp. Math. (2021), 2150022 | DOI
[2] Existence and profile of ground-state solutions to a 1-Laplacian problem in
[3] The Euler equation for functionals with linear growth, Trans. Am. Math. Soc., Volume 290 (1985) no. 2, pp. 483-501 | Zbl | MR | DOI
[4] Variational analysis in Sobolev and BV spaces. Applications to PDEs and optimization, MOS-SIAM Series on Optimization, 17, Society for Industrial and Applied Mathematics; Mathematical Optimization Society, Philadelphia, PA, 2014 | Zbl | MR | DOI
[5] Existence and concentration of positive ground states for a 1-Laplacian problem in
[6] Existence of bounded variation solutions for a 1-Laplacian problem with vanishing potentials, J. Math. Anal. Appl., Volume 459 (2018) no. 2, pp. 861-878 | Zbl | MR | DOI
[7] Nehari method for locally Lipschitz functionals with examples in problems in the space of bounded variation functions, NoDEA, Nonlinear Differ. Equ. Appl., Volume 25 (2018) no. 5, 47 | Zbl | MR | DOI
[8] Strauss’ and Lions’ type results in
[9] Ground states of nonlinear Schrödinger equations with potentials, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 23 (2006) no. 6, pp. 829-837 | mathdoc-id | Zbl | MR | DOI
[10] The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 1 (1984) no. 2, pp. 109-145 | DOI | Zbl | MR
[11] A Berestycki–Lions’ type result to a quasilinear elliptic problem involving the 1-Laplacian operator, J. Math. Anal. Appl., Volume 500 (2021) no. 1, 125074 | Zbl | MR | DOI
[12] Nonlinear total variation based noise removal algorithms, Physica D, Volume 60 (1992) no. 1-4, pp. 259-268 | Zbl | MR | DOI
[13] Existence of a radial solution to a 1-Laplacian problem in
Cité par Sources :