Voir la notice de l'article provenant de la source Numdam
In this note, we investigate the density of the exponential functional of the fractional Brownian motion. Based on the techniques of Malliavin’s calculus, we provide a log-normal upper bound for the density.
Tien Dung, Nguyen 1 ; Thu Hang, Nguyen 2 ; Phuong Thuy, Pham Thi 3
@article{CRMATH_2022__360_G2_151_0, author = {Tien Dung, Nguyen and Thu Hang, Nguyen and Phuong Thuy, Pham Thi}, title = {Density estimates for the exponential functionals of fractional {Brownian} motion}, journal = {Comptes Rendus. Math\'ematique}, pages = {151--159}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G2}, year = {2022}, doi = {10.5802/crmath.274}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.274/} }
TY - JOUR AU - Tien Dung, Nguyen AU - Thu Hang, Nguyen AU - Phuong Thuy, Pham Thi TI - Density estimates for the exponential functionals of fractional Brownian motion JO - Comptes Rendus. Mathématique PY - 2022 SP - 151 EP - 159 VL - 360 IS - G2 PB - Académie des sciences, Paris UR - https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.274/ DO - 10.5802/crmath.274 LA - en ID - CRMATH_2022__360_G2_151_0 ER -
%0 Journal Article %A Tien Dung, Nguyen %A Thu Hang, Nguyen %A Phuong Thuy, Pham Thi %T Density estimates for the exponential functionals of fractional Brownian motion %J Comptes Rendus. Mathématique %D 2022 %P 151-159 %V 360 %N G2 %I Académie des sciences, Paris %U https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.274/ %R 10.5802/crmath.274 %G en %F CRMATH_2022__360_G2_151_0
Tien Dung, Nguyen; Thu Hang, Nguyen; Phuong Thuy, Pham Thi. Density estimates for the exponential functionals of fractional Brownian motion. Comptes Rendus. Mathématique, Tome 360 (2022) no. G2, pp. 151-159. doi : 10.5802/crmath.274. https://geodesic-test.mathdoc.fr/articles/10.5802/crmath.274/
[1] Gaussian-type lower bounds for the density of solutions of SDEs driven by fractional Brownian motions, Ann. Probab., Volume 44 (2016) no. 1, pp. 399-443 | MR | Zbl
[2] Stochastic heat equation with fractional Laplacian and fractional noise: existence of the solution and analysis of its density, Acta Math. Sci., Volume 37 (2017) no. 6, pp. 1545-1566 | MR | Zbl
[3] Exponential functionals of Brownian motion. I. Probability laws at fixed time, Probab. Surv., Volume 2 (2005), pp. 312-347 | MR | Zbl
[4] Exponential functionals of Brownian motion. II. Some related diffusion processes, Probab. Surv., Volume 2 (2005), pp. 348-384 | MR | Zbl
[5] The Malliavin calculus and related topics, Probability and Its Applications, Springer, 2006 | Zbl
[6] Smoothness and Gaussian density estimates for stochastic functional differential equations with fractional noise, Stat. Optim. Inf. Comput., Volume 8 (2020) no. 4, pp. 822-833 | DOI | MR
[7] The density of solutions to multifractional stochastic Volterra integro-differential equations, Nonlinear Anal., Theory Methods Appl., Volume 130 (2016), pp. 176-189 | DOI | MR | Zbl
[8] Kolmogorov distance between the exponential functionals of fractional Brownian motion, C. R. Math. Acad. Sci. Paris, Volume 357 (2019) no. 7, pp. 629-635 | MR | Zbl
[9] Gaussian lower bounds for the density via Malliavin calculus, C. R. Math. Acad. Sci. Paris, Volume 358 (2020) no. 1, pp. 79-88 | MR | Zbl
[10] Exponential functionals of Brownian motion and related processes, Springer Finance, Springer, 2001 | Zbl
Cité par Sources :