On representation theory of partition algebras for complex reflection groups
Algebraic Combinatorics, Tome 3 (2020) no. 2, pp. 389-432.

Voir la notice de l'article provenant de la source Numdam

This paper defines the partition algebra, denoted by 𝒯k(r,p,n), for complex reflection group G(r,p,n) acting on k-fold tensor product (n)k, where n is the reflection representation of G(r,p,n). A basis of the centralizer algebra of this action of G(r,p,n) was given by Tanabe and for p=1, the corresponding partition algebra was studied by Orellana. We also define a subalgebra 𝒯k+12(r,p,n) such that 𝒯k(r,p,n)𝒯k+12(r,p,n)𝒯k+1(r,p,n) and establish this subalgebra as partition algebra of a subgroup of G(r,p,n) acting on (n)k. We call the algebras 𝒯k(r,p,n) and 𝒯k+12(r,p,n) Tanabe algebras. The aim of this paper is to study representation theory of Tanabe algebras: parametrization of their irreducible modules, and construction of Bratteli diagram for the tower of Tanabe algebras

𝒯0(r,p,n)𝒯12(r,p,n)𝒯1(r,p,n)𝒯32(r,p,n)𝒯n2(r,p,n).

We conclude the paper by giving Jucys–Murphy elements of Tanabe algebras and their actions on the Gelfand–Tsetlin basis, determined by this multiplicity free tower, of irreducible modules.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.97
Classification : 05E10, 20F55, 20C15
Mots-clés : Complex reflection groups, Tanabe algebras, Schur–Weyl duality, Jucys–Murphy elements

Mishra, Ashish 1 ; Srivastava, Shraddha 2

1 Instituto de Ciências Exatas e Naturais Universidade Federal do Pará Belém Pará Brazil
2 The Institute of Mathematical Sciences Chennai India
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2020__3_2_389_0,
     author = {Mishra, Ashish and Srivastava, Shraddha},
     title = {On representation theory of partition algebras for complex reflection groups},
     journal = {Algebraic Combinatorics},
     pages = {389--432},
     publisher = {MathOA foundation},
     volume = {3},
     number = {2},
     year = {2020},
     doi = {10.5802/alco.97},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.5802/alco.97/}
}
TY  - JOUR
AU  - Mishra, Ashish
AU  - Srivastava, Shraddha
TI  - On representation theory of partition algebras for complex reflection groups
JO  - Algebraic Combinatorics
PY  - 2020
SP  - 389
EP  - 432
VL  - 3
IS  - 2
PB  - MathOA foundation
UR  - https://geodesic-test.mathdoc.fr/articles/10.5802/alco.97/
DO  - 10.5802/alco.97
LA  - en
ID  - ALCO_2020__3_2_389_0
ER  - 
%0 Journal Article
%A Mishra, Ashish
%A Srivastava, Shraddha
%T On representation theory of partition algebras for complex reflection groups
%J Algebraic Combinatorics
%D 2020
%P 389-432
%V 3
%N 2
%I MathOA foundation
%U https://geodesic-test.mathdoc.fr/articles/10.5802/alco.97/
%R 10.5802/alco.97
%G en
%F ALCO_2020__3_2_389_0
Mishra, Ashish; Srivastava, Shraddha. On representation theory of partition algebras for complex reflection groups. Algebraic Combinatorics, Tome 3 (2020) no. 2, pp. 389-432. doi : 10.5802/alco.97. https://geodesic-test.mathdoc.fr/articles/10.5802/alco.97/

[1] Bagno, Eli; Biagioli, Riccardo Colored-descent representations of complex reflection groups G(r,p,n), Israel J. Math., Volume 160 (2007), pp. 317-347 | Zbl | MR | DOI

[2] Benkart, Georgia; Halverson, Tom Partition algebras Pk(n) with 2k>n and the fundamental theorems of invariant theory for the symmetric group Sn, J. Lond. Math. Soc. (2), Volume 99 (2019) no. 1, pp. 194-224 | Zbl | MR | DOI

[3] Bloss, Matthew Partition algebras and permutation representations of wreath products, Ph. D. Thesis, University of Wisconsin – Madison (USA) (2002) (http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3049298)

[4] Cohen, Arjeh M. Finite complex reflection groups, Ann. Sci. École Norm. Sup. (4), Volume 9 (1976) no. 3, pp. 379-436 | Zbl | mathdoc-id | DOI | MR

[5] Enyang, John A seminormal form for partition algebras, J. Combin. Theory Ser. A, Volume 120 (2013) no. 7, pp. 1737-1785 | Zbl | MR | DOI

[6] Green, James A. Polynomial representations of GLn, Lecture Notes in Mathematics, 830, Springer, Berlin, 2007, x+161 pages (With an appendix on Schensted correspondence and Littelmann paths by K. Erdmann, Green and M. Schocker) | MR

[7] Halverson, Tom; Ram, Arun Murnaghan–Nakayama rules for characters of Iwahori–Hecke algebras of the complex reflection groups G(r,p,n), Canad. J. Math., Volume 50 (1998) no. 1, pp. 167-192 | Zbl | MR | DOI

[8] Halverson, Tom; Ram, Arun Partition algebras, European J. Combin., Volume 26 (2005) no. 6, pp. 869-921 | Zbl | MR | DOI

[9] Jones, Vaughan F. R. The Potts model and the symmetric group, Subfactors (Kyuzeso, 1993), World Sci. Publ., River Edge, NJ, 1994, pp. 259-267 | Zbl | MR

[10] Martin, Paul P. Temperley–Lieb algebras for nonplanar statistical mechanics – the partition algebra construction, J. Knot Theory Ramifications, Volume 3 (1994) no. 1, pp. 51-82 | Zbl | MR | DOI

[11] Martin, Paul P. The partition algebra and the Potts model transfer matrix spectrum in high dimensions, J. Phys. A, Volume 33 (2000) no. 19, pp. 3669-3695 | Zbl | MR | DOI

[12] Martin, Paul P.; Rollet, Geneviève The Potts model representation and a Robinson–Schensted correspondence for the partition algebra, Compositio Math., Volume 112 (1998) no. 2, pp. 237-254 | Zbl | MR | DOI

[13] Martin, Paul P.; Saleur, Hubert On an algebraic approach to higher-dimensional statistical mechanics, Comm. Math. Phys., Volume 158 (1993) no. 1, pp. 155-190 | Zbl | DOI | MR

[14] Martin, Paul P.; Saleur, Hubert Algebras in higher-dimensional statistical mechanics – the exceptional partition (mean field) algebras, Lett. Math. Phys., Volume 30 (1994) no. 3, pp. 179-185 | Zbl | MR | DOI

[15] Mendes, Anthony; Remmel, Jeffrey; Wagner, Jennifer A λ-ring Frobenius characteristic for GSn, Electron. J. Combin., Volume 11 (2004) no. 1, paper number 56, 33 pages | Zbl | MR

[16] Mishra, Ashish; Srinivasan, Murali K. The Okounkov–Vershik approach to the representation theory of GSn, J. Algebraic Combin., Volume 44 (2016) no. 3, pp. 519-560 | Zbl | MR | DOI

[17] Morita, Hiroshi; Yamada, Hiro-Fumi Higher Specht polynomials for the complex reflection group G(r,p,n), Hokkaido Math. J., Volume 27 (1998) no. 3, pp. 505-515 | MR | DOI

[18] Okounkov, Andrei; Vershik, Anatoly A new approach to representation theory of symmetric groups, Selecta Math. (N.S.), Volume 2 (1996) no. 4, pp. 581-605 | Zbl | MR | DOI

[19] Orellana, Rosa C. On partition algebras for complex reflection groups, J. Algebra, Volume 313 (2007) no. 2, pp. 590-616 | Zbl | MR | DOI

[20] Pushkarev, I. A. On the theory of representations of the wreath products of finite groups and symmetric groups, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), Volume 240 (1997) no. Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 2, p. 229-244, 294–295 translation in J. Math. Sci. (New York) 96 (1999), no. 5, 3590–3599 | Zbl | MR | DOI

[21] Ram, Arun Notes (http://soimeme.org/~arunram/notes.html)

[22] Ram, Arun Notes titled Murphy elements Ak(r,p,n) (2010) Accessed 2018-04-16 http://soimeme.org/~arunram/Notes/murphyelementsContent.xhtml (accessed 16th April 2018)

[23] Ram, Arun Notes titled Schur–Weyl dualities (2010) Accessed 2017-12-28 http://soimeme.org/~arunram/Notes/schurweyldualitiesContent.xhtml (accessed 28th December 2017)

[24] Read, E. W. On the finite imprimitive unitary reflection groups, J. Algebra, Volume 45 (1977) no. 2, pp. 439-452 | Zbl | MR | DOI

[25] Shephard, Geoffrey C.; Todd, J. A. Finite unitary reflection groups, Canadian J. Math., Volume 6 (1954), pp. 274-304 | DOI | Zbl | MR

[26] Stembridge, John R. On the eigenvalues of representations of reflection groups and wreath products, Pacific J. Math., Volume 140 (1989) no. 2, pp. 353-396 | Zbl | DOI | MR

[27] Tanabe, Kenichiro On the centralizer algebra of the unitary reflection group G(m,p,n), Nagoya Math. J., Volume 148 (1997), pp. 113-126 | Zbl | MR | DOI

[28] Vershik, Anatoly; Okounkov, Andrei A new approach to representation theory of symmetric groups. II, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), Volume 307 (2004) no. Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 10, p. 57-98, 281 translation in J. Math. Sci. (N. Y.) 131 (2005), no. 2, 5471–5494 | MR | DOI

[29] Wigner, Eugene P. Condition that the irreducible representations of a group, considered as representations of a subgroup, do not contain any representation of the subgroup more than once, The collected works of Eugene Paul Wigner. Part A. The scientific papers. Vol. I, Springer-Verlag, Berlin, 1993 Published in: Spectroscopic and Group Theoretic Methods in Physics, (F. Bloch et al., eds.). North-Holland, Amsterdam 1968, pp.131–136 | MR

Cité par Sources :