Pattern avoidance and quasisymmetric functions
Algebraic Combinatorics, Tome 3 (2020) no. 2, pp. 365-388.

Voir la notice de l'article provenant de la source Numdam

Given a set of permutations Π, let 𝔖n(Π) denote the set of permutations in the symmetric group 𝔖n that avoid every element of Π in the sense of pattern avoidance. Given a subset S of {1,,n-1}, let FS be the fundamental quasisymmetric function indexed by S. Our object of study is the generating function Qn(Π)=FDesσ where the sum is over all σ𝔖n(Π) and Desσ is the descent set of σ. We characterize those Π𝔖3 such that Qn(Π) is symmetric or Schur nonnegative for all n. In the process, we show how each of the resulting Π can be obtained from a theorem or conjecture involving more general sets of patterns. In particular, we prove results concerning symmetries, shuffles, and Knuth classes, as well as pointing out a relationship with the arc permutations of Elizalde and Roichman. Various conjectures and questions are mentioned throughout.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.96
Classification : 05E05, 05A05
Mots-clés : Knuth class, pattern avoidance, quasisymmetric function, Schur function, shuffle, symmetric function, Young tableau

Hamaker, Zachary 1 ; Pawlowski, Brendan 2 ; Sagan, Bruce E. 3

1 University of Florida Department of Mathematics Gainesville FL 32611-1941, USA
2 University of Southern California Department of Mathematics Los Angeles CA 90089-2532, USA
3 Michigan State University Department of Mathematics East Lansing MI 48824-1027, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2020__3_2_365_0,
     author = {Hamaker, Zachary and Pawlowski, Brendan and Sagan, Bruce E.},
     title = {Pattern avoidance and quasisymmetric functions},
     journal = {Algebraic Combinatorics},
     pages = {365--388},
     publisher = {MathOA foundation},
     volume = {3},
     number = {2},
     year = {2020},
     doi = {10.5802/alco.96},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.5802/alco.96/}
}
TY  - JOUR
AU  - Hamaker, Zachary
AU  - Pawlowski, Brendan
AU  - Sagan, Bruce E.
TI  - Pattern avoidance and quasisymmetric functions
JO  - Algebraic Combinatorics
PY  - 2020
SP  - 365
EP  - 388
VL  - 3
IS  - 2
PB  - MathOA foundation
UR  - https://geodesic-test.mathdoc.fr/articles/10.5802/alco.96/
DO  - 10.5802/alco.96
LA  - en
ID  - ALCO_2020__3_2_365_0
ER  - 
%0 Journal Article
%A Hamaker, Zachary
%A Pawlowski, Brendan
%A Sagan, Bruce E.
%T Pattern avoidance and quasisymmetric functions
%J Algebraic Combinatorics
%D 2020
%P 365-388
%V 3
%N 2
%I MathOA foundation
%U https://geodesic-test.mathdoc.fr/articles/10.5802/alco.96/
%R 10.5802/alco.96
%G en
%F ALCO_2020__3_2_365_0
Hamaker, Zachary; Pawlowski, Brendan; Sagan, Bruce E. Pattern avoidance and quasisymmetric functions. Algebraic Combinatorics, Tome 3 (2020) no. 2, pp. 365-388. doi : 10.5802/alco.96. https://geodesic-test.mathdoc.fr/articles/10.5802/alco.96/

[1] Adin, Ron M.; Roichman, Yuval Matrices, characters and descents, Linear Algebra Appl., Volume 469 (2015), pp. 381-418 | Zbl | MR | DOI

[2] Bloom, Jonathan; Sagan, Bruce E. Revisiting patterns avoidance and quasisymmetric functions (2018) (preprint, https://arxiv.org/abs/1812.10738)

[3] Bóna, Miklós Combinatorics of permutations, Discrete Mathematics and its Applications (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2004, xiv+383 pages | Zbl | MR

[4] Elizalde, Sergi; Roichman, Yuval Arc permutations, J. Algebr. Comb., Volume 39 (2014) no. 2, pp. 301-334 | Zbl | MR | DOI

[5] Elizalde, Sergi; Roichman, Yuval Signed arc permutations, J. Comb., Volume 6 (2015) no. 1-2, pp. 205-234 | Zbl | MR | DOI

[6] Elizalde, Sergi; Roichman, Yuval On rotated Schur-positive sets, J. Comb. Theory, Ser. A, Volume 152 (2017), pp. 121-137 | Zbl | MR | DOI

[7] Elizalde, Sergi; Roichman, Yuval Schur-positive sets of permutations via products and grid classes, J. Algebr. Comb., Volume 45 (2017) no. 2, pp. 363-405 | Zbl | MR | DOI

[8] Erdős, Paul; Szekeres, George A combinatorial problem in geometry, Compos. Math., Volume 2 (1935), pp. 463-470 | Zbl | mathdoc-id | MR

[9] Gessel, Ira M. Multipartite P-partitions and inner products of skew Schur functions, Combinatorics and algebra (Boulder, Colo., 1983) (Contemp. Math.), Volume 34, Amer. Math. Soc., Providence, RI, 1984, pp. 289-317 | DOI | Zbl | MR

[10] Macdonald, Ian G. Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1995, x+475 pages (With contributions by A. Zelevinsky, Oxford Science Publications) | Zbl | MR

[11] Malvenuto, Claudia; Reutenauer, Christophe Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra, Volume 177 (1995) no. 3, pp. 967-982 | Zbl | MR | DOI

[12] Robinson, Gilbert de B. On the Representations of the Symmetric Group, Am. J. Math., Volume 60 (1938) no. 3, pp. 745-760 | Zbl | MR | DOI

[13] Sagan, Bruce E. The symmetric group: Representations, combinatorial algorithms, and symmetric functions, Graduate Texts in Mathematics, 203, Springer-Verlag, New York, 2001, xvi+238 pages | Zbl | MR

[14] Schensted, Craige E. Longest increasing and decreasing subsequences, Can. J. Math., Volume 13 (1961), pp. 179-191 | Zbl | DOI | MR

[15] Simion, Rodica; Schmidt, Frank W. Restricted permutations, Eur. J. Comb., Volume 6 (1985) no. 4, pp. 383-406 | Zbl | DOI | MR

[16] Stanley, Richard P. Enumerative Combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999, xii+581 pages (With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin) | Zbl | MR

[17] Stembridge, John R. Enriched P-partitions, Trans. Am. Math. Soc., Volume 349 (1997) no. 2, pp. 763-788 | Zbl | MR | DOI

Cité par Sources :