Voir la notice de l'article provenant de la source Numdam
We relate the linear asymptotic representation theory of the symmetric groups to its spin counterpart. In particular, we give explicit formulas which express the normalized irreducible spin characters evaluated on a strict partition
Matsumoto, Sho 1 ; Śniady, Piotr 2
@article{ALCO_2020__3_1_249_0, author = {Matsumoto, Sho and \'Sniady, Piotr}, title = {Linear versus spin: representation theory of~the symmetric groups}, journal = {Algebraic Combinatorics}, pages = {249--280}, publisher = {MathOA foundation}, volume = {3}, number = {1}, year = {2020}, doi = {10.5802/alco.92}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5802/alco.92/} }
TY - JOUR AU - Matsumoto, Sho AU - Śniady, Piotr TI - Linear versus spin: representation theory of the symmetric groups JO - Algebraic Combinatorics PY - 2020 SP - 249 EP - 280 VL - 3 IS - 1 PB - MathOA foundation UR - https://geodesic-test.mathdoc.fr/articles/10.5802/alco.92/ DO - 10.5802/alco.92 LA - en ID - ALCO_2020__3_1_249_0 ER -
%0 Journal Article %A Matsumoto, Sho %A Śniady, Piotr %T Linear versus spin: representation theory of the symmetric groups %J Algebraic Combinatorics %D 2020 %P 249-280 %V 3 %N 1 %I MathOA foundation %U https://geodesic-test.mathdoc.fr/articles/10.5802/alco.92/ %R 10.5802/alco.92 %G en %F ALCO_2020__3_1_249_0
Matsumoto, Sho; Śniady, Piotr. Linear versus spin: representation theory of the symmetric groups. Algebraic Combinatorics, Tome 3 (2020) no. 1, pp. 249-280. doi : 10.5802/alco.92. https://geodesic-test.mathdoc.fr/articles/10.5802/alco.92/
[1] Representations of symmetric groups and free probability, Adv. Math., Volume 138 (1998) no. 1, pp. 126-181 | Zbl | MR | DOI
[2] Characters of symmetric groups and free cumulants, Asymptotic combinatorics with applications to mathematical physics (St. Petersburg, 2001) (Lecture Notes in Math.), Volume 1815, Springer, Berlin, 2003, pp. 185-200 | Zbl | MR | DOI
[3] On the formula of Goulden and Rattan for Kerov polynomials, Sém. Lothar. Comb., Volume 55 (2005/07), B55d, 5 pages | Zbl | MR
[4] Bijection between oriented maps and weighted non-oriented maps, Electron. J. Comb., Volume 24 (2017) no. 3, 3.7, 34 pages | Zbl | MR
[5] Asymptotic results for Representation Theory (2018) (https://arxiv.org/abs/1805.04065)
[6] Gaussian fluctuations of Jack-deformed random Young diagrams, Probab. Theory Relat. Fields, Volume 174 (2019) no. 1-2, pp. 133-176 | MR | Zbl | DOI
[7] Explicit combinatorial interpretation of Kerov character polynomials as numbers of permutation factorizations, Adv. Math., Volume 225 (2010) no. 1, pp. 81-120 | Zbl | MR | DOI
[8] Jack polynomials and orientability generating series of maps, Sém. Lothar. Comb., Volume 70 (2014), B70j, 50 pages | MR | Zbl
[9] Asymptotics for skew standard Young tableaux via bounds for characters (2017) (https://arxiv.org/abs/1710.05652)
[10] Stanley’s formula for characters of the symmetric group, Ann. Comb., Volume 13 (2010) no. 4, pp. 453-461 | Zbl | MR | DOI
[11] Asymptotics of characters of symmetric groups related to Stanley character formula, Ann. Math. (2), Volume 173 (2011) no. 2, pp. 887-906 | Zbl | MR | DOI
[12] Zonal polynomials via Stanley’s coordinates and free cumulants, J. Algebra, Volume 334 (2011) no. 1, pp. 338-373 | Zbl | MR | DOI
[13] An explicit form for Kerov’s character polynomials, Trans. Am. Math. Soc., Volume 359 (2007) no. 8, pp. 3669-3685 | DOI | Zbl | MR
[14] The limit shape problem for ensembles of Young diagrams, SpringerBriefs in Mathematical Physics, 17, Springer, Tokyo, 2016, ix+73 pages | Zbl | MR | DOI
[15] Gaussian Limit for Projective Characters of Large Symmetric Groups, J. Math. Sci., New York, Volume 121 (2004) no. 3, pp. 2330-2344 | MR | DOI
[16] Plancherel measure on shifted Young diagrams, Representation theory, dynamical systems, and asymptotic combinatorics (Amer. Math. Soc. Transl. Ser. 2), Volume 217, Amer. Math. Soc., Providence, RI, 2006, pp. 73-86 | Zbl | MR | DOI
[17] Polynomial functions on the set of Young diagrams, C. R. Acad. Sci. Paris Sér. I Math., Volume 319 (1994) no. 2, pp. 121-126 | Zbl | MR
[18] Linear and projective representations of symmetric groups, Cambridge Tracts in Mathematics, 163, Cambridge University Press, Cambridge, 2005, xiv+277 pages | Zbl | MR | DOI
[19] Graphs on surfaces and their applications, Encyclopaedia of Mathematical Sciences, 141, Springer-Verlag, Berlin, 2004 | Zbl | MR | DOI
[20] On random shifted standard Young tableaux and
[21] Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995, x+475 pages (With contributions by A. Zelevinsky, Oxford Science Publications) | Zbl | MR
[22] A spin analogue of Kerov polynomials, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 14 (2018), 053, 13 pages | Zbl | MR
[23] Stanley character formula for the spin characters of the symmetric groups, Séminaire Lotharingien de Combinatoire, Volume 82B (2019), #1, 12 pages Proceedings of the 31st Conference on Formal Power Series and Algebraic Combinatorics (Ljubljana)
[24] Random strict partitions and random shifted tableaux, Selecta Mathematica, Volume 26 (2020) no. 1, 10, 59 pages | DOI
[25] Representation theory of symmetric groups, Discrete Mathematics and its Applications, CRC Press, Boca Raton, FL, 2017, xvi+666 pages | Zbl | MR | DOI
[26] Young’s orthogonal form of irreducible projective representations of the symmetric group, J. Lond. Math. Soc., II. Ser., Volume 42 (1990) no. 3, pp. 437-451 | Zbl | MR | DOI
[27] Explicit formulae for Kerov polynomials, J. Algebr. Comb., Volume 33 (2011) no. 1, pp. 141-151 | Zbl | MR | DOI
[28] Upper bound on the characters of the symmetric groups for balanced Young diagrams and a generalized Frobenius formula, Adv. Math., Volume 218 (2008) no. 3, pp. 673-695 | DOI | Zbl | MR
[29] Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, J. Reine Angew. Math., Volume 139 (1911), pp. 155-250 | Zbl | MR | DOI
[30] Gaussian fluctuations of characters of symmetric groups and of Young diagrams, Probab. Theory Relat. Fields, Volume 136 (2006) no. 2, pp. 263-297 | Zbl | MR | DOI
[31] Combinatorics of asymptotic representation theory, European Congress of Mathematics, Eur. Math. Soc., Zürich, 2013, pp. 531-545 | MR
[32] Stanley character polynomials, The mathematical legacy of Richard P. Stanley, Amer. Math. Soc., Providence, RI, 2016, pp. 323-334 | DOI | Zbl | MR
[33] Asymptotics of Jack characters, J. Comb. Theory, Ser. A, Volume 166 (2019), pp. 91-143 | MR | Zbl | DOI
[34] Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999, xii+581 pages (With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin) | Zbl | MR | DOI
[35] Irreducible symmetric group characters of rectangular shape, Sém. Lothar. Comb., Volume 50 (2003/04), B50d, 11 pages | Zbl | MR
[36] A conjectured combinatorial interpretation of the normalized irreducible character values of the symmetric group (2006) (https://arxiv.org/abs/math/0606467)
[37] Shifted tableaux and the projective representations of symmetric groups, Adv. Math., Volume 74 (1989) no. 1, pp. 87-134 | Zbl | MR | DOI
[38] Lectures on spin representation theory of symmetric groups, Bull. Inst. Math., Acad. Sin. (N.S.), Volume 7 (2012) no. 1, pp. 91-164 | Zbl | MR
Cité par Sources :