Voir la notice de l'article provenant de la source Numdam
In this paper, we study prime order automorphisms of generalized quadrangles. We show that, if
with a similar inequality holding in the dual case when
In particular, if
then a thick generalized quadrangle
Afton, Santana F. 1 ; Swartz, Eric 1
@article{ALCO_2020__3_1_143_0, author = {Afton, Santana F. and Swartz, Eric}, title = {On prime order automorphisms of generalized quadrangles}, journal = {Algebraic Combinatorics}, pages = {143--160}, publisher = {MathOA foundation}, volume = {3}, number = {1}, year = {2020}, doi = {10.5802/alco.89}, zbl = {07169927}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5802/alco.89/} }
TY - JOUR AU - Afton, Santana F. AU - Swartz, Eric TI - On prime order automorphisms of generalized quadrangles JO - Algebraic Combinatorics PY - 2020 SP - 143 EP - 160 VL - 3 IS - 1 PB - MathOA foundation UR - https://geodesic-test.mathdoc.fr/articles/10.5802/alco.89/ DO - 10.5802/alco.89 LA - en ID - ALCO_2020__3_1_143_0 ER -
%0 Journal Article %A Afton, Santana F. %A Swartz, Eric %T On prime order automorphisms of generalized quadrangles %J Algebraic Combinatorics %D 2020 %P 143-160 %V 3 %N 1 %I MathOA foundation %U https://geodesic-test.mathdoc.fr/articles/10.5802/alco.89/ %R 10.5802/alco.89 %G en %F ALCO_2020__3_1_143_0
Afton, Santana F.; Swartz, Eric. On prime order automorphisms of generalized quadrangles. Algebraic Combinatorics, Tome 3 (2020) no. 1, pp. 143-160. doi : 10.5802/alco.89. https://geodesic-test.mathdoc.fr/articles/10.5802/alco.89/
[1] Ovoids of generalized quadrangles of order
[2] Generalised quadrangles with a group of automorphisms acting primitively on points and lines, J. Combin. Theory Ser. A, Volume 119 (2012) no. 7, pp. 1479-1499 | Zbl | MR | DOI
[3] Generalized quadrangles and transitive pseudo-hyperovals, J. Combin. Des., Volume 24 (2016) no. 4, pp. 151-164 | Zbl | MR | DOI
[4] A classification of finite antiflag-transitive generalized quadrangles, Trans. Amer. Math. Soc., Volume 370 (2018) no. 3, pp. 1551-1601 | Zbl | MR | DOI
[5] A classification of finite locally 2-transitive generalized quadrangles (2019) (https://arxiv.org/abs/1903.07442)
[6] Point-primitive, line-transitive generalised quadrangles of holomorph type, J. Group Theory, Volume 20 (2017) no. 2, pp. 269-287 | Zbl | MR | DOI
[7] Simple groups, product actions, and generalized quadrangles, Nagoya Math. J., Volume 234 (2019), pp. 87-126 | Zbl | MR | DOI
[8] On the structure of generalized quadrangles, J. Algebra, Volume 15 (1970), pp. 443-454 | Zbl | MR | DOI
[9] Nouveaux théorèmes relatifs à la distinction des nombres premiers et à la composition des entiers en facteurs, Sc. Math. Phys., Volume 6 (1857), pp. 305-329
[10] Permutation groups, London Mathematical Society Student Texts, 45, Cambridge University Press, Cambridge, 1999, x+220 pages | Zbl | MR | DOI
[11] Automorphisms of strongly regular graphs with applications to partial difference sets, Des. Codes Cryptogr., Volume 79 (2016) no. 3, pp. 471-485 | Zbl | MR | DOI
[12] Generalized quadrangles with an abelian Singer group, Des. Codes Cryptogr., Volume 39 (2006) no. 1, pp. 81-87 | Zbl | MR | DOI
[13] The automorphism group of Payne derived generalized quadrangles, Adv. Math., Volume 214 (2007) no. 1, pp. 146-156 | Zbl | MR | DOI
[14] Generalized quadrangles admitting a sharply transitive Heisenberg group, Des. Codes Cryptogr., Volume 47 (2008) no. 1-3, pp. 237-242 | Zbl | MR | DOI
[15] On automorphisms of a distance-regular graph with intersection array
[16] Regular groups on generalized quadrangles and nonabelian difference sets with multiplier
[17] Transitive projective planes, Adv. Geom., Volume 7 (2007) no. 4, pp. 475-528 | Zbl | MR | DOI
[18] Transitive projective planes and insoluble groups, Trans. Amer. Math. Soc., Volume 368 (2016) no. 5, pp. 3017-3057 | Zbl | MR | DOI
[19] Simple groups of order divisible by at most four primes, Proc. F. Scorina Gomel State Univ., Volume 16 (2000) no. 3, pp. 64-75 | Zbl
[20] Finite group theory, Graduate Studies in Mathematics, 92, American Mathematical Society, Providence, RI, 2008, xii+350 pages | Zbl | MR | DOI
[21] Search for properties of the missing Moore graph, Linear Algebra Appl., Volume 432 (2010) no. 9, pp. 2381-2398 | Zbl | MR | DOI
[22] Ovoids and bipartite subgraphs in generalized quadrangles, Mat. Zametki, Volume 73 (2003) no. 6, pp. 878-885 | Zbl | MR | DOI
[23] Automorphism groups of generalized quadrangles via an unusual action of
[24] An inequality for generalized quadrangles, Proc. Amer. Math. Soc., Volume 71 (1978) no. 1, pp. 147-152 | Zbl | MR | DOI
[25] The fundamental theorem of
[26] Finite generalized quadrangles, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2009, xii+287 pages | Zbl | MR | DOI
[27] An O’Nan–Scott theorem for finite quasiprimitive permutation groups and an application to
[28] On generalized quadrangles with a point regular group of automorphisms, European J. Combin., Volume 79 (2019), pp. 60-74 | Zbl | MR | DOI
[29] Sur la trialité et certains groupes qui s’en déduisent, Inst. Hautes Etudes Sci. Publ. Math., Volume 2 (1959), pp. 14-60 | DOI | Zbl
[30] A generalized quadrangle with an automorphism group acting regularly on the points, European J. Combin., Volume 28 (2007) no. 2, pp. 653-664 | Zbl | MR | DOI
Cité par Sources :