Voir la notice de l'article provenant de la source Numdam
This paper studies a discrete homotopy theory for graphs introduced by Barcelo et al. We prove two main results. First we show that if
Lutz, Bob 1
@article{ALCO_2021__4_1_69_0, author = {Lutz, Bob}, title = {Higher discrete homotopy groups of graphs}, journal = {Algebraic Combinatorics}, pages = {69--88}, publisher = {MathOA foundation}, volume = {4}, number = {1}, year = {2021}, doi = {10.5802/alco.151}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5802/alco.151/} }
Lutz, Bob. Higher discrete homotopy groups of graphs. Algebraic Combinatorics, Tome 4 (2021) no. 1, pp. 69-88. doi : 10.5802/alco.151. https://geodesic-test.mathdoc.fr/articles/10.5802/alco.151/
[1] Homotopy theory of graphs, J. Algebraic Combin., Volume 24 (2006) no. 1, pp. 31-44 | Zbl | MR | DOI
[2] Manifolds: Hausdorffness versus homogeneity, Proc. Amer. Math. Soc., Volume 136 (2008) no. 3, pp. 1105-1111 | Zbl | MR | DOI
[3] Discrete homology theory for metric spaces, Bull. Lond. Math. Soc., Volume 46 (2014) no. 5, pp. 889-905 | Zbl | MR | DOI
[4] Discrete cubical and path homologies of graphs, Algebr. Comb., Volume 2 (2019) no. 3, pp. 417-437 | Zbl | MR | DOI
[5] On the vanishing of discrete singular cubical homology for graphs (2019) (https://arxiv.org/abs/1909.02901)
[6] Foundations of a connectivity theory for simplicial complexes, Adv. in Appl. Math., Volume 26 (2001) no. 2, pp. 97-128 | Zbl | MR | DOI
[7] Perspectives on
[8]
[9] The discrete fundamental group of the order complex of
[10] The homotopy groups of a triad. II, Ann. of Math. (2), Volume 55 (1952), pp. 192-201 | Zbl | MR | DOI
[11] Algebraic topology, Cambridge University Press, Cambridge, 2002, xii+544 pages | Zbl | MR
[12] Homotopie und Homologiegruppen, Proc. Akad. Wetensch. Amsterdam, Volume 38 (1935), pp. 521-528
[13] Algebraic topology, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2008, xii+567 pages | Zbl | MR | DOI
Cité par Sources :