Voir la notice de l'article provenant de la source Numdam
Random transvections generate a walk on the space of symplectic forms on
He, Jimmy 1
@article{ALCO_2020__3_5_1165_0, author = {He, Jimmy}, title = {Random walk on the symplectic forms over a finite field}, journal = {Algebraic Combinatorics}, pages = {1165--1181}, publisher = {MathOA foundation}, volume = {3}, number = {5}, year = {2020}, doi = {10.5802/alco.131}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5802/alco.131/} }
TY - JOUR AU - He, Jimmy TI - Random walk on the symplectic forms over a finite field JO - Algebraic Combinatorics PY - 2020 SP - 1165 EP - 1181 VL - 3 IS - 5 PB - MathOA foundation UR - https://geodesic-test.mathdoc.fr/articles/10.5802/alco.131/ DO - 10.5802/alco.131 LA - en ID - ALCO_2020__3_5_1165_0 ER -
He, Jimmy. Random walk on the symplectic forms over a finite field. Algebraic Combinatorics, Tome 3 (2020) no. 5, pp. 1165-1181. doi : 10.5802/alco.131. https://geodesic-test.mathdoc.fr/articles/10.5802/alco.131/
[1] The character table of the Hecke algebra
[2] Harmonic analysis on finite groups: Representation theory, Gelfand pairs and Markov chains, Cambridge Studies in Advanced Mathematics, 108, Cambridge University Press, Cambridge, 2008, xiv+440 pages | Zbl | DOI
[3] Group representations in probability and statistics, Institute of Mathematical Statistics Lecture Notes—Monograph Series, 11, Institute of Mathematical Statistics, Hayward, CA, 1988, vi+198 pages | MR | Zbl
[4] Random walks on trees and matchings, Electron. J. Probab., Volume 7 (2002), no. 6, 17 pages | MR | Zbl | DOI
[5] Comparison theorems for reversible Markov chains, Ann. Appl. Probab., Volume 3 (1993) no. 3, pp. 696-730 | DOI | MR | Zbl
[6] Generating a random permutation with random transpositions, Z. Wahrsch. Verw. Gebiete, Volume 57 (1981) no. 2, pp. 159-179 | MR | Zbl | DOI
[7] Time to reach stationarity in the Bernoulli–Laplace diffusion model, SIAM J. Math. Anal., Volume 18 (1987) no. 1, pp. 208-218 | MR | Zbl | DOI
[8] The characters of the finite general linear groups, Trans. Amer. Math. Soc., Volume 80 (1955) no. 2, pp. 402-447 | DOI | MR | Zbl
[9] A characteristic map for the symmetric space of symplectic forms over a finite field (2019) (https://arxiv.org/abs/1906.05966)
[10] Generating random elements in
[11] Markov Chains and Mixing Times, American Mathematical Society, Providence, RI, 2017
[12] Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979, viii+180 pages | Zbl
[13] The cut-off phenomenon for Brownian motions on compact symmetric spaces, Potential Anal., Volume 40 (2014) no. 4, pp. 427-509 | MR | Zbl | DOI
[14] Symplectic groups, Mathematical Surveys, 16, American Mathematical Society, Providence, R.I., 1978, xi+122 pages | MR | Zbl
Cité par Sources :