Voir la notice de l'article provenant de la source Numdam
We introduce a variant of the much-studied
Sundaram, Sheila 1
@article{ALCO_2020__3_4_985_0, author = {Sundaram, Sheila}, title = {On a curious variant of the $S_n$-module {Lie}$_n$}, journal = {Algebraic Combinatorics}, pages = {985--1009}, publisher = {MathOA foundation}, volume = {3}, number = {4}, year = {2020}, doi = {10.5802/alco.127}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5802/alco.127/} }
TY - JOUR AU - Sundaram, Sheila TI - On a curious variant of the $S_n$-module Lie$_n$ JO - Algebraic Combinatorics PY - 2020 SP - 985 EP - 1009 VL - 3 IS - 4 PB - MathOA foundation UR - https://geodesic-test.mathdoc.fr/articles/10.5802/alco.127/ DO - 10.5802/alco.127 LA - en ID - ALCO_2020__3_4_985_0 ER -
Sundaram, Sheila. On a curious variant of the $S_n$-module Lie$_n$. Algebraic Combinatorics, Tome 3 (2020) no. 4, pp. 985-1009. doi : 10.5802/alco.127. https://geodesic-test.mathdoc.fr/articles/10.5802/alco.127/
[1] The Möbius function and connected graphs, J. Combinatorial Theory Ser. B, Volume 11 (1971), pp. 193-200 | Zbl | DOI
[2] Characters of symmetric groups induced by characters of cyclic subgroups, Combinatorics (Proc. Conf. Combinatorial Math., Math. Inst., Oxford, 1972) (1972), pp. 141-154 | MR
[3] A Hodge-type decomposition for commutative algebra cohomology, J. Pure Appl. Algebra, Volume 48 (1987) no. 3, pp. 229-247 | MR | Zbl | DOI
[4] A bijection between words and multisets of necklaces, European J. Combin., Volume 33 (2012) no. 7, pp. 1537-1546 | MR | Zbl | DOI
[5] The action of
[6] A Hodge decomposition for the complex of injective words, Pacific J. Math., Volume 214 (2004) no. 1, pp. 109-125 | MR | Zbl | DOI
[7] Representation stability for cohomology of configuration spaces in
[8] Polynomial splitting measures and cohomology of the pure braid group, Arnold Math. J., Volume 3 (2017) no. 2, pp. 219-249 | MR | Zbl | DOI
[9] Algebra of coinvariants and the action of a Coxeter element, Bayreuth. Math. Schr. (2001) no. 63, pp. 265-284 | MR | Zbl
[10] On the Poincaré series associated with Coxeter group actions on complements of hyperplanes, J. London Math. Soc. (2), Volume 36 (1987) no. 2, pp. 275-294 | Zbl | DOI
[11] On the action of the symmetric group on the cohomology of the complement of its reflecting hyperplanes, J. Algebra, Volume 104 (1986) no. 2, pp. 410-424 | Zbl | MR | DOI
[12] Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995, x+475 pages (With contributions by A. Zelevinsky, Oxford Science Publications) | Zbl
[13] The combinatorics of the bar resolution in group cohomology, J. Pure Appl. Algebra, Volume 190 (2004) no. 1-3, pp. 291-327 | MR | Zbl | DOI
[14] Free Lie algebras, London Mathematical Society Monographs. New Series, 7, The Clarendon Press, Oxford University Press, New York, 1993, xviii+269 pages (Oxford Science Publications) | MR | Zbl
[15] The tree representation of
[16] On the sum of the elements in the character table of a finite group, Proc. Amer. Math. Soc., Volume 12 (1961), pp. 962-963 | MR | Zbl | DOI
[17] Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999, xii+581 pages (With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin) | MR | Zbl | DOI
[18] The homology representations of the symmetric group on Cohen-Macaulay subposets of the partition lattice, Adv. Math., Volume 104 (1994) no. 2, pp. 225-296 | MR | Zbl | DOI
[19] The conjugacy action of
[20] On a variant of
[21] On the Schur positivity of sums of power sums, Sém. Lothar. Combin., Volume 82B (2019), Art. 49, 12 pages | Zbl
[22] Group actions on arrangements of linear subspaces and applications to configuration spaces, Trans. Amer. Math. Soc., Volume 349 (1997) no. 4, pp. 1389-1420 | MR | Zbl | DOI
[23] On symmetrized Kronecker powers and the structure of the free Lie ring, Amer. J. Math., Volume 64 (1942), pp. 371-388 | MR | Zbl | DOI
[24] The integral tree representation of the symmetric group, J. Algebraic Combin., Volume 13 (2001) no. 3, pp. 317-326 | Zbl | MR | DOI
Cité par 5 documents. Sources : zbMATH