Voir la notice de l'article provenant de la source Numdam
In this paper, we discuss the toric ideals of the Minkowski sums of unit simplices. More precisely, we prove that the toric ideal of the Minkowski sum of unit simplices has a squarefree initial ideal and is generated by quadratic binomials. Moreover, we also prove that the Minkowski sums of unit simplices have the integer decomposition property. Those results are a partial contribution to Oda conjecture and Bøgvad conjecture.
Higashitani, Akihiro 1 ; Ohsugi, Hidefumi 2
@article{ALCO_2020__3_4_831_0, author = {Higashitani, Akihiro and Ohsugi, Hidefumi}, title = {Toric ideals of {Minkowski} sums of unit simplices}, journal = {Algebraic Combinatorics}, pages = {831--837}, publisher = {MathOA foundation}, volume = {3}, number = {4}, year = {2020}, doi = {10.5802/alco.117}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5802/alco.117/} }
TY - JOUR AU - Higashitani, Akihiro AU - Ohsugi, Hidefumi TI - Toric ideals of Minkowski sums of unit simplices JO - Algebraic Combinatorics PY - 2020 SP - 831 EP - 837 VL - 3 IS - 4 PB - MathOA foundation UR - https://geodesic-test.mathdoc.fr/articles/10.5802/alco.117/ DO - 10.5802/alco.117 LA - en ID - ALCO_2020__3_4_831_0 ER -
%0 Journal Article %A Higashitani, Akihiro %A Ohsugi, Hidefumi %T Toric ideals of Minkowski sums of unit simplices %J Algebraic Combinatorics %D 2020 %P 831-837 %V 3 %N 4 %I MathOA foundation %U https://geodesic-test.mathdoc.fr/articles/10.5802/alco.117/ %R 10.5802/alco.117 %G en %F ALCO_2020__3_4_831_0
Higashitani, Akihiro; Ohsugi, Hidefumi. Toric ideals of Minkowski sums of unit simplices. Algebraic Combinatorics, Tome 3 (2020) no. 4, pp. 831-837. doi : 10.5802/alco.117. https://geodesic-test.mathdoc.fr/articles/10.5802/alco.117/
[1] Gröbner bases of nested configurations, J. Algebra, Volume 320 (2008) no. 6, pp. 2583-2593 | Zbl | DOI
[2] Smooth centrally symmetric polytopes in dimension
[3] The quest for counterexamples in toric geometry, Commutative algebra and algebraic geometry (CAAG-2010) (Ramanujan Math. Soc. Lect. Notes Ser.), Volume 17, Ramanujan Math. Soc., Mysore, 2013, pp. 45-61 | Zbl | MR
[4] Toric topology, Mathematical Surveys and Monographs, 204, American Mathematical Society, Providence, RI, 2015, xiv+518 pages | MR | Zbl | DOI
[5] Binomial ideals, Graduate Texts in Mathematics, 279, Springer, Cham, 2018, xix+321 pages | MR | Zbl | DOI
[6] Permutohedra, associahedra, and beyond, Int. Math. Res. Not. IMRN (2009) no. 6, pp. 1026-1106 | MR | Zbl | DOI
[7] Gröbner bases of contraction ideals, J. Algebraic Combin., Volume 36 (2012) no. 1, pp. 1-19 | MR | Zbl | DOI
[8] A polytope related to empirical distributions, plane trees, parking functions, and the associahedron, Discrete Comput. Geom., Volume 27 (2002) no. 4, pp. 603-634 | MR | Zbl | DOI
[9] Gröbner bases and convex polytopes, University Lecture Series, 8, American Mathematical Society, Providence, RI, 1996, xii+162 pages | Zbl
[10] Cayley sums and Minkowski sums of
Cité par 2 documents. Sources : zbMATH