Toric ideals of Minkowski sums of unit simplices
Algebraic Combinatorics, Tome 3 (2020) no. 4, pp. 831-837.

Voir la notice de l'article provenant de la source Numdam

In this paper, we discuss the toric ideals of the Minkowski sums of unit simplices. More precisely, we prove that the toric ideal of the Minkowski sum of unit simplices has a squarefree initial ideal and is generated by quadratic binomials. Moreover, we also prove that the Minkowski sums of unit simplices have the integer decomposition property. Those results are a partial contribution to Oda conjecture and Bøgvad conjecture.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.117
Classification : 13P10, 52B20
Mots-clés : Integer decomposition property, Gröbner basis, Generalized permutohedron.

Higashitani, Akihiro 1 ; Ohsugi, Hidefumi 2

1 Osaka University Graduate School of Information Science and Technology Department of Pure and Applied Mathematics Suita, Osaka 565-0871, Japan
2 Kwansei Gakuin University School of Science and Technology Department of Mathematical Sciences Sanda, Hyogo 669-1337, Japan
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2020__3_4_831_0,
     author = {Higashitani, Akihiro and Ohsugi, Hidefumi},
     title = {Toric ideals of {Minkowski} sums of unit simplices},
     journal = {Algebraic Combinatorics},
     pages = {831--837},
     publisher = {MathOA foundation},
     volume = {3},
     number = {4},
     year = {2020},
     doi = {10.5802/alco.117},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.5802/alco.117/}
}
TY  - JOUR
AU  - Higashitani, Akihiro
AU  - Ohsugi, Hidefumi
TI  - Toric ideals of Minkowski sums of unit simplices
JO  - Algebraic Combinatorics
PY  - 2020
SP  - 831
EP  - 837
VL  - 3
IS  - 4
PB  - MathOA foundation
UR  - https://geodesic-test.mathdoc.fr/articles/10.5802/alco.117/
DO  - 10.5802/alco.117
LA  - en
ID  - ALCO_2020__3_4_831_0
ER  - 
%0 Journal Article
%A Higashitani, Akihiro
%A Ohsugi, Hidefumi
%T Toric ideals of Minkowski sums of unit simplices
%J Algebraic Combinatorics
%D 2020
%P 831-837
%V 3
%N 4
%I MathOA foundation
%U https://geodesic-test.mathdoc.fr/articles/10.5802/alco.117/
%R 10.5802/alco.117
%G en
%F ALCO_2020__3_4_831_0
Higashitani, Akihiro; Ohsugi, Hidefumi. Toric ideals of Minkowski sums of unit simplices. Algebraic Combinatorics, Tome 3 (2020) no. 4, pp. 831-837. doi : 10.5802/alco.117. https://geodesic-test.mathdoc.fr/articles/10.5802/alco.117/

[1] Aoki, Satoshi; Hibi, Takayuki; Ohsugi, Hidefumi; Takemura, Akimichi Gröbner bases of nested configurations, J. Algebra, Volume 320 (2008) no. 6, pp. 2583-2593 | Zbl | DOI

[2] Beck, Matthias; Haase, Christian; Higashitani, Akihiro; Hofscheier, Johannes; Jochemko, Katharina; Katthän, Lukas; Michałek, Mateusz Smooth centrally symmetric polytopes in dimension 3 are IDP, Ann. Comb., Volume 23 (2019) no. 2, pp. 255-262 | MR | Zbl | DOI

[3] Bruns, Winfried The quest for counterexamples in toric geometry, Commutative algebra and algebraic geometry (CAAG-2010) (Ramanujan Math. Soc. Lect. Notes Ser.), Volume 17, Ramanujan Math. Soc., Mysore, 2013, pp. 45-61 | Zbl | MR

[4] Buchstaber, Victor M.; Panov, Taras E. Toric topology, Mathematical Surveys and Monographs, 204, American Mathematical Society, Providence, RI, 2015, xiv+518 pages | MR | Zbl | DOI

[5] Herzog, Jürgen; Hibi, Takayuki; Ohsugi, Hidefumi Binomial ideals, Graduate Texts in Mathematics, 279, Springer, Cham, 2018, xix+321 pages | MR | Zbl | DOI

[6] Postnikov, Alexander Permutohedra, associahedra, and beyond, Int. Math. Res. Not. IMRN (2009) no. 6, pp. 1026-1106 | MR | Zbl | DOI

[7] Shibuta, Takafumi Gröbner bases of contraction ideals, J. Algebraic Combin., Volume 36 (2012) no. 1, pp. 1-19 | MR | Zbl | DOI

[8] Stanley, Richard P.; Pitman, Jim A polytope related to empirical distributions, plane trees, parking functions, and the associahedron, Discrete Comput. Geom., Volume 27 (2002) no. 4, pp. 603-634 | MR | Zbl | DOI

[9] Sturmfels, Bernd Gröbner bases and convex polytopes, University Lecture Series, 8, American Mathematical Society, Providence, RI, 1996, xii+162 pages | Zbl

[10] Tsuchiya, Akiyoshi Cayley sums and Minkowski sums of 2-convex-normal lattice polytopes (2018) (https://arxiv.org/abs/1804.10538)

  • Domokos, M.; Joó, D. Low dimensional flow polytopes and their toric ideals, Linear Algebra and its Applications, Volume 654 (2022), pp. 210-249 | DOI:10.1016/j.laa.2022.08.023 | Zbl:1532.13030
  • Laface, Antonio; Massarenti, Alex; Rischter, Rick On secant defectiveness and identifiability of Segre-Veronese varieties, Revista Matemática Iberoamericana, Volume 38 (2022) no. 5, pp. 1605-1635 | DOI:10.4171/rmi/1336 | Zbl:1503.14050

Cité par 2 documents. Sources : zbMATH