Grothendieck polynomials and the boson-fermion correspondence
Algebraic Combinatorics, Tome 3 (2020) no. 5, pp. 1023-1040.

Voir la notice de l'article provenant de la source Numdam

In this paper we study algebraic and combinatorial properties of symmetric Grothendieck polynomials and their dual polynomials by means of the boson-fermion correspondence. We show that these symmetric functions can be expressed as a vacuum expectation value of some operator that is written in terms of free-fermions. By using the free-fermionic expressions, we obtain alternative proofs of determinantal formulas and Pieri type formulas.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.116
Classification : 05E05, 05E10, 17B69
Mots-clés : Symmetric Grothendieck polynomials, Boson-fermion correspondence.

Iwao, Shinsuke 1

1 Department of Mathematics, Tokai University, 4-1-1, Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan.
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2020__3_5_1023_0,
     author = {Iwao, Shinsuke},
     title = {Grothendieck polynomials and~the~boson-fermion correspondence},
     journal = {Algebraic Combinatorics},
     pages = {1023--1040},
     publisher = {MathOA foundation},
     volume = {3},
     number = {5},
     year = {2020},
     doi = {10.5802/alco.116},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.5802/alco.116/}
}
TY  - JOUR
AU  - Iwao, Shinsuke
TI  - Grothendieck polynomials and the boson-fermion correspondence
JO  - Algebraic Combinatorics
PY  - 2020
SP  - 1023
EP  - 1040
VL  - 3
IS  - 5
PB  - MathOA foundation
UR  - https://geodesic-test.mathdoc.fr/articles/10.5802/alco.116/
DO  - 10.5802/alco.116
LA  - en
ID  - ALCO_2020__3_5_1023_0
ER  - 
%0 Journal Article
%A Iwao, Shinsuke
%T Grothendieck polynomials and the boson-fermion correspondence
%J Algebraic Combinatorics
%D 2020
%P 1023-1040
%V 3
%N 5
%I MathOA foundation
%U https://geodesic-test.mathdoc.fr/articles/10.5802/alco.116/
%R 10.5802/alco.116
%G en
%F ALCO_2020__3_5_1023_0
Iwao, Shinsuke. Grothendieck polynomials and the boson-fermion correspondence. Algebraic Combinatorics, Tome 3 (2020) no. 5, pp. 1023-1040. doi : 10.5802/alco.116. https://geodesic-test.mathdoc.fr/articles/10.5802/alco.116/

[1] Alexandrov, Alexander; Zabrodin, Anton Free fermions and tau-functions, J. Geom. Phys., Volume 67 (2013), pp. 37-80 | Zbl | MR | DOI

[2] Buch, Anders S. A Littlewood–Richardson rule for the K-theory of Grassmannians, Acta Math., Volume 189 (2002) no. 1, pp. 37-78 | Zbl | MR | DOI

[3] Fomin, Sergey; Greene, Curtis Noncommutative Schur functions and their applications, Discrete Math., Volume 193 (1998) no. 1-3, pp. 179-200 | Zbl | MR | DOI

[4] Fomin, Sergey; Kirillov, Anatol N. Grothendieck polynomials and the Yang–Baxter equation, Proc. Formal Power Series and Alg. Comb (1994), pp. 183-190

[5] Fulton, William Young Tableaux: With Applications to Representation Theory and Geometry, London Mathematical Society Student Texts, Cambridge University Press, 1996 | Zbl | DOI

[6] Hudson, Thomas; Ikeda, Takeshi; Matsumura, Tomoo; Naruse, Hiroshi Degeneracy loci classes in K-theory — determinantal and Pfaffian formula, Adv. Math., Volume 320 (2017), pp. 115-156 | Zbl | MR | DOI

[7] Ikeda, Takeshi; Naruse, Hiroshi K-theoretic analogues of factorial Schur P- and Q-functions, Adv. Math., Volume 243 (2013), pp. 22-66 | Zbl | MR | DOI

[8] Iwao, Shinsuke; Nagai, Hidetomo The discrete Toda equation revisited: dual β-Grothendieck polynomials, ultradiscretization, and static solitons, J. Phys. A, Volume 51 (2018) no. 13, 134002 | Zbl | MR | DOI

[9] Jimbo, Michio; Miwa, Tetsuji Solitons and infinite-dimensional Lie algebras, Publ. Res. Inst. Math. Sci., Volume 19 (1983) no. 3, pp. 943-1001 | Zbl | MR | DOI

[10] Kac, Victor G.; Raina, Ashok K.; Rozhkovskaya, Natasha Bombay lectures on highest weight representations of infinite dimensional Lie algebras, Advanced Series in Mathematical Physics, 29, World scientific, 2013 | MR | Zbl

[11] Kirillov, Anatol N. On some quadratic algebras I 12: combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss–Catalan, universal Tutte and reduced polynomials, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 12 (2016), Paper no. 002, 172 pages | Zbl | MR | DOI

[12] Lascoux, Alain; Naruse, Hiroshi Finite sum Cauchy identity for dual Grothendieck polynomials, Proc. Japan Acad. Ser. A Math. Sci., Volume 90 (2014) no. 7, pp. 87-91 | Zbl | MR | DOI

[13] Lascoux, Alain; Schützenberger, Marcel-Paul Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux, C. R. Acad. Sci. Paris Sér. I Math., Volume 295 (1982) no. 11, pp. 629-633 | Zbl | MR

[14] Lascoux, Alain; Schützenberger, Marcel-Paul Symmetry and flag manifolds, Invariant theory (Montecatini, 1982) (Lecture Notes in Math.), Volume 996, Springer, Berlin (1983), pp. 118-144 | Zbl | MR | DOI

[15] Lenart, Cristian Combinatorial aspects of the K-theory of Grassmannians, Ann. Comb., Volume 4 (2000) no. 1, pp. 67-82 | Zbl | MR | DOI

[16] Macdonald, Ian G. Symmetric functions and Hall polynomials, Oxford university press, 1998 | Zbl

[17] Miwa, Tetsuji; Jimbo, Michio; Date, Etsuro; Reid, Miles Solitons: Differential equations, symmetries and infinite dimensional algebras, Cambridge Tracts in Mathematics, 135, Cambridge University Press, 2012

[18] Motegi, Kohei; Sakai, Kazumitsu Vertex models, TASEP and Grothendieck polynomials, J. Phys. A, Volume 46 (2013) no. 35, p. 355201, 26 | Zbl | MR | DOI

[19] Motegi, Kohei; Sakai, Kazumitsu K-theoretic boson-fermion correspondence and melting crystals, J. Phys. A, Volume 47 (2014) no. 44, p. 445202, 30 | Zbl | MR | DOI

[20] Nakagawa, Masaki; Naruse, Hiroshi Universal factorial Schur P,Q-functions and their duals (2018) (https://arxiv.org/abs/1812.03328)

[21] Shimozono, Mark; Zabrocki, Mike Stable Grothendieck polynomials and Ω-calculus (2011) (unpublished)

[22] Yeliussizov, Damir Duality and deformations of stable Grothendieck polynomials, J. Algebraic Combin., Volume 45 (2017) no. 1, pp. 295-344 | Zbl | MR | DOI

Cité par Sources :