Voir la notice de l'article provenant de la source Numdam
In this paper we study algebraic and combinatorial properties of symmetric Grothendieck polynomials and their dual polynomials by means of the boson-fermion correspondence. We show that these symmetric functions can be expressed as a vacuum expectation value of some operator that is written in terms of free-fermions. By using the free-fermionic expressions, we obtain alternative proofs of determinantal formulas and Pieri type formulas.
Iwao, Shinsuke 1
@article{ALCO_2020__3_5_1023_0, author = {Iwao, Shinsuke}, title = {Grothendieck polynomials and~the~boson-fermion correspondence}, journal = {Algebraic Combinatorics}, pages = {1023--1040}, publisher = {MathOA foundation}, volume = {3}, number = {5}, year = {2020}, doi = {10.5802/alco.116}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.5802/alco.116/} }
TY - JOUR AU - Iwao, Shinsuke TI - Grothendieck polynomials and the boson-fermion correspondence JO - Algebraic Combinatorics PY - 2020 SP - 1023 EP - 1040 VL - 3 IS - 5 PB - MathOA foundation UR - https://geodesic-test.mathdoc.fr/articles/10.5802/alco.116/ DO - 10.5802/alco.116 LA - en ID - ALCO_2020__3_5_1023_0 ER -
Iwao, Shinsuke. Grothendieck polynomials and the boson-fermion correspondence. Algebraic Combinatorics, Tome 3 (2020) no. 5, pp. 1023-1040. doi : 10.5802/alco.116. https://geodesic-test.mathdoc.fr/articles/10.5802/alco.116/
[1] Free fermions and tau-functions, J. Geom. Phys., Volume 67 (2013), pp. 37-80 | Zbl | MR | DOI
[2] A Littlewood–Richardson rule for the
[3] Noncommutative Schur functions and their applications, Discrete Math., Volume 193 (1998) no. 1-3, pp. 179-200 | Zbl | MR | DOI
[4] Grothendieck polynomials and the Yang–Baxter equation, Proc. Formal Power Series and Alg. Comb (1994), pp. 183-190
[5] Young Tableaux: With Applications to Representation Theory and Geometry, London Mathematical Society Student Texts, Cambridge University Press, 1996 | Zbl | DOI
[6] Degeneracy loci classes in
[7]
[8] The discrete Toda equation revisited: dual
[9] Solitons and infinite-dimensional Lie algebras, Publ. Res. Inst. Math. Sci., Volume 19 (1983) no. 3, pp. 943-1001 | Zbl | MR | DOI
[10] Bombay lectures on highest weight representations of infinite dimensional Lie algebras, Advanced Series in Mathematical Physics, 29, World scientific, 2013 | MR | Zbl
[11] On some quadratic algebras I
[12] Finite sum Cauchy identity for dual Grothendieck polynomials, Proc. Japan Acad. Ser. A Math. Sci., Volume 90 (2014) no. 7, pp. 87-91 | Zbl | MR | DOI
[13] Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux, C. R. Acad. Sci. Paris Sér. I Math., Volume 295 (1982) no. 11, pp. 629-633 | Zbl | MR
[14] Symmetry and flag manifolds, Invariant theory (Montecatini, 1982) (Lecture Notes in Math.), Volume 996, Springer, Berlin (1983), pp. 118-144 | Zbl | MR | DOI
[15] Combinatorial aspects of the
[16] Symmetric functions and Hall polynomials, Oxford university press, 1998 | Zbl
[17] Solitons: Differential equations, symmetries and infinite dimensional algebras, Cambridge Tracts in Mathematics, 135, Cambridge University Press, 2012
[18] Vertex models, TASEP and Grothendieck polynomials, J. Phys. A, Volume 46 (2013) no. 35, p. 355201, 26 | Zbl | MR | DOI
[19]
[20] Universal factorial Schur
[21] Stable Grothendieck polynomials and
[22] Duality and deformations of stable Grothendieck polynomials, J. Algebraic Combin., Volume 45 (2017) no. 1, pp. 295-344 | Zbl | MR | DOI
Cité par Sources :